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ABSTRACT

We present a simple auction mechanism which extends the
second-price auction with reserve and is truthful in expec-
tation. This mechanism is particularly effective in private
value environments where the distribution of valuations are
irregular. Bidders can “buy-it-now”, or alternatively “take-
a-chance” where the top d bidders are equally likely to win.
The randomized take-a-chance allocation incentivizes high
valuation bidders to buy-it-now. We show that for a large
class of valuations, this mechanism achieves similar alloca-
tions and revenues as Myerson’s optimal mechanism, and
outperforms the second-price auction with reserve.
In addition, we present an evaluation of bid data from

Microsoft’s AdECN platform. We find the valuations are
irregular, and counterfactual experiments suggest our BIN-
TAC mechanism would improve revenue by 11% relative to
an optimal second-price mechanism with reserve.

Categories and Subject Descriptors

K.4.4 [Computing Milieux]: Electronic Commerce

General Terms

Algorithms, Economics, Theory

Keywords
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1. INTRODUCTION
Many Internet companies generate revenue by selling the

advertisement space on their webpages. Improved target-
ing technologies allow e-commerce firms to match advertis-
ers and consumers with ever greater efficiency. While these
technologies generate a lot of surplus for advertisers, they
also tend to create thin markets with skewed value distri-
butions. These environments pose special challenges for the
predominant auction mechanisms that are used to sell online
ads because they reduce competition among bidders, making

it difficult for the platform to extract the surplus generated
by targeting; see [2, 9].

For example, a sportswear firm advertising on the New
York Times website may be willing to pay much more for an
advertisement placed next to a sports article than one next
to a movie review. It might pay an additional premium
for a local consumer who lives in New York City and an
even higher premium if the consumer is known to browse
websites selling sportswear. Each layer of targeting increases
the sportswear firm’s valuation for the consumer but also
dramatically narrows down the set of competitors to fellow
sportswear firms in New York City. Without competition,
revenue performance may be poor [9].

To get some intuition, consider a simple model: When ad-
vertisers “match” with users, they have high valuation; oth-
erwise they have low valuation. Assume that match proba-
bilities are independent across bidders, and sufficiently low
that the probability that any bidder matches is relatively
small. Then a second-price auction will typically get low
revenue, since the probability of two “matches” occurring in
the same auction is small. On the other hand, setting a
high fixed price is not effective since the probability of zero
“matches”occurring is relatively large and many impressions
would go unallocated. Hence, allowing targeting creates
asymmetries in valuations that can increase efficiency, but
decrease revenue. In fact, because of this phenomenon, some
have suggested that it is better to create thicker markets by
bundling different impressions together [7, 6, 10].

Bundling may improve revenues, but reduces efficiency
since the average quality of user-advertiser matches is de-
graded. In principle, one would like to allow targeting but
still extract significant revenues. This paper outlines a new
and simple mechanism which addresses this issue. We call
it buy-it-now or take-a-chance (BIN-TAC ), and it works as
follows. Goods are auctioned with a buy-it-now price p, set
relatively high. If a single bidder is willing to pay the price,
they get the good for price p. If more than one bidder takes
the buy-it-now option, a second price auction is held between
those bidders with reserve p. Finally, if no-one participates
in buy-it-now, an auction is held in which the top d bidders
are eligible to receive the good, and it is randomly awarded
to one of them at the (d+1)-st price. Note that in the case
where d = 1 this reduces to the second-price auction.

In this manner, we combine the advantages of an auc-
tion and a fixed price mechanism. When matches occur,
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advertisers pay for the fixed-price buy-it-now option, allow-
ing for revenue extraction. This is incentive compatible (i.e.
truthful) because in the event that they “take-a-chance” on
winning via auction, there is a significant probability that
they will not win the impression. On the other hand, when
no matches occur, the auction mechanism ensures the im-
pression is still allocated.
The BIN-TAC mechanism is simple, and requires rela-

tively little input from the mechanism designer: a choice of
buy-it-now price, take-a-chance parameter d and optionally
a reserve in the take-a-chance auction. This makes it flex-
ible across a wide range of environments. The tradeoff is
that it is not the optimal mechanism analyzed by [13]. As
it turns out, the downside is small. We show that when
the valuations are drawn iid from a mixture of two regu-
lar distributions — a weighted combination of high and low
valuation distributions with disjoint supports — our mecha-
nism is “nearly optimal” in the sense that it has very similar
allocation rules and transfer payments as the optimal mech-
anism. In this setting, the second price auction with reserve
is rarely optimal, and is dramatically outperformed by the
BIN-TAC mechanism. We also run simulations to show that
BIN-TAC also outperforms the SPA by a large margin in en-
vironments where the supports overlap.
In the last part of the paper, we demonstrate our mech-

anism’s effectiveness using data from the AdECN platform.
Since the current auction format is a second-price auction,
which is incentive compatible, we can interpret bids as valua-
tions, and therefore simulate how these bidders would coun-
terfactually behave under a BIN-TAC format. We find that
our mechanism generates 11% more revenue than the opti-
mal second-price auction.

Related Work

Myerson [13] proposed a general approach to design opti-
mal mechanisms when the private information of the agents
is single-dimensional. However, if the distributions are not
“well-behaved”, then characterizing the optimal mechanism
can be challenging. The approach we take in this work is to
look instead for a simple and “nearly optimal” mechanism.
Hartline and Roughgarden [8] discuss the benefits of simple
mechanisms, and show a variety of examples where they can
approximate the optimal expected revenue.
Sequential screening models have been proposed for rev-

enue maximization in dynamic environments. For instance,
Courty and Li [5] consider a setting where the buyers them-
selves learn their type dynamically (first whether they are
high or low, then their specific valuation). In this case, of-
fering contracts after the first type revelation but before
the second may be optimal; see [3] for a survey on dy-
namic mechanisms. In the static setting, sequential screen-
ing and posted-prices can be used to design optimal (or near-
optimal) mechanisms when the bidders have multi-dimensional
private information, e.g., see [16, 4]. Our model deals with
the case where types are single-dimensional, have a mixture
and buyers know their valuation from the outset. Addi-
tionally, our model considers only the private value setting.
Abraham et al. [1], consider an adverse selection problem
that arises in a common value setting when some bidders
are privately informed; this is motivated by the display ad-
vertising and advertisement exchange markets when some
advertiser are better able to utilize information obtained
from cookies. They show that asymmetry of information
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Figure 1: In these two examples we see that a bidder’s

valuation fluctuates dramatically in a way that is uncor-

related with other bidders and uncorrelated over time.

can sometimes lead to low revenue in this market. For fur-
ther discussion on advertisement exchange markets see [12].

Organization

The paper proceeds in four parts. First, we describe the
AdECNmarket, providing some interesting and (to our knowl-
edge) novel observations about this market. In the second
part we define the mechanism and an stylized environment
inspired by the AdECN market, proving existence and char-
acterization results, and solving for the revenue-maximizing
parameter choices analytically. The third section consists of
simulation results, comparing the performance of the BIN-
TAC mechanism to the SPA and to the benchmark of full-
surplus extraction, as the shape of the distributions, the
probability of high valuation and the number of bidders vary.
Finally, in the fourth part we estimate valuations and con-
duct counterfactual experiments using the AdECN data. All
proofs are contained in the appendix.

2. THE ADECN MARKET
In this paper we focus on situations where bidder valua-

tions fluctuate considerably. We first show evidence from a
real-world market which drives this interest. Specifically, we
examine data from AdECN, Microsoft’s real-time auction-
based neutral exchange for online display advertising. On
AdECN, advertisers, or firms acting on their behalf, may
bid for display ads on various publishers. An impression is
a single advertisement slot on a given webpage to a given
user. An auction is held every time an individual browses
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Figure 2: Kernel density estimate of the pdf of the (nor-

malized) gap between the highest and second highest

bids in auctions for ads A and B.

a webpage on one of the publishers. Consequently, a huge
number of auctions are held each day. We examined the bids
for a subset of products over a 24-hour period — a data set
of over 2 million auctions (see Table 1 for an overview).
Impressions are grouped together into products, usually

consisting of an advertising slot on a particular publisher
(e.g., banner ad on the main New York Times sports page).
This reduces the complexity of the market, by allowing bid-
ders to express their bids in terms of products, rather than
individual impressions. Yet AdECN provides bidders with
some information about web page content, as well as demo-
graphic and historical information about the users, so that
bidders can vary their bids with these characteristics in or-
der to optimize their advertising to target audiences. The
auction mechanism is a second-price auction with reserve.
Since it is weakly dominant to bid one’s valuation in a SPA,
we interpret bids as valuations.
Figure 1 shows 50 randomly selected impressions on two

products. Looking at the figures, we see that there are rel-
atively few bidders in the market, 4 on product A and 5
on product B, so the market is relatively thin. The highest
bid varies markedly across auctions, consistent with bidders
varying their bidding strategy based on observable informa-
tion about the viewer. Most winning bids are quite low, but
occasionally winning bids are much higher. Moreover, con-
ditional on a high bid from one bidder, the other bids do
not appear to be higher, which suggests that idiosyncratic
advertiser-impression matches drive the high bids, rather
than a commonly valued component. Additionally, the value
of an impression does not vary depending on the time of day,
suggesting the matches are driven by the user’s properties,
not the page or advertisement content.
Given these observations, one might expect the gap be-

tween the winning bid and the price — the second highest
bid — to be quite substantial. This is clear from Figure 2, a
kernel density estimate of this gap. In Figure 3 we plot the

virtual valuations v − 1−F (v)
f(v)

.

For both example products, the virtual valuations are non-
increasing, which implies that the SPA with reserve is not
the optimal mechanism. On the other hand, the repeated
fluctuation in virtual valuation implies the optimal mecha-
nism is quite complex, requiring “ironing” over several re-
gions. This motivated our search for a middle ground: a
mechanism that retains the simplicity of the SPA while get-
ting nearly optimal revenue performance.
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Figure 3: The virtual valuation (computed using a
kernel density estimate of the pdfs).

3. BUY-IT-NOW OR TAKE-A-CHANCE
We start our analysis by formally defining the BIN-TAC

mechanism. A buy-it-now price p is posted. Buyers simulta-
neously indicate whether they wish to buy-it-now (BIN ). In
the event that exactly one bidder elects to buy-it-now, that
bidder wins the auction and pays p. If two or more bidders
elect to BIN, a second-price sealed bid auction with reserve
p is held between those bidders. Bidders who chose to BIN
are obliged to participate in this auction. Finally, if no-one
elects to BIN, a sealed bid take-a-chance (TAC ) auction is
held between all bidders, with a reserve r. In that auction,
one of the top d bidders is chosen uniformly at random, and
if that bidder’s bid exceeds the reserve, they win the auction
and pay the maximum of the reserve and the (d+1)-th bid.1

We call d the TAC-parameter.

3.1 A Stylized Model
Motivated by the observations in Section 2, we define a

stylized environment in which bidders generally have low
valuations, but occasionally one or more bidders have much
higher valuations. Assume n bidders participate in an auc-
tion for a single good which is valued at zero by the seller.
Buyers are risk neutral, and draw their values Vi for the
good independently and privately from some distribution
F . This F is a mixture of FL and FH , and a valuation V
takes the form V = (1−X)VL +XVH where X a Bernoulli
random variable with parameter 0 ≤ α ≤ 1, VL ∼ FL and
VH ∼ FH . We assume FL has support [ωL, ωL] and FH has
support [ωH , ωH ], and that these supports are disjoint (so
ωL < ωH). This formalizes the idea that there are two sep-
arate types: low valuation types (draws from FL) and high
valuation types (draws from FH), although there is hetero-
geneity within these groups.

An important feature of this environment is that optimal
mechanism design is not straightforward. Define the virtual

valuations ψ(v) ≡ v− 1−F (v)
f(v)

. When ψ(v) is strictly increas-

ing, the optimal mechanism is a second-price auction with a
reserve price [13]. Here, however, the virtual valuations are
(infinitely) negative over the region (ωL, ωH) since F is un-
supported on this region. In this case the ironing of virtual
values is required, and the optimal mechanism is relatively
complicated and hard to compute. What we will later argue
is that the BIN-TAC mechanism is much simpler and“nearly

1Ties occur when multiple bidders bid the d-th highest bid:
in that case, the price is the d-th highest bid, and all bid-
ders who bid that amount jointly split a 1/d probability of
allocation.
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optimal” (see Section 3.3). First, however, we characterize
equilibrium behavior.

3.2 Equilibrium Analysis
This is a sequential mechanism which we analyze by back-

ward induction. The auctions that follow the initial BIN
decision admit simple strategies. If multiple players choose
to BIN, the allocation mechanism reduces to a second-price
auction with reserve p. Thus, it is weakly dominant for play-
ers to bid their valuations. Since participation is obligatory
at this stage, the minimum allowable bid is p. However, it
is easy to show that an individually rational player will not
choose to BIN unless her valuation is at least p, so this does
not present a problem.
Likewise, in the TAC auction it is weakly dominant for

the bidders to bid their valuations. The logic is standard:
if a bidder with valuation v bids b′ > v, it can only change
the allocation when the maximum of the d-th highest rival
bid and the reserve price is in [v, b′]. But whenever this oc-
curs, the resulting price of the object is above the bidder’s
valuation and if he wins he will regret his decision. Alterna-
tively, if they bid b′ < v, the price is not affected, and their
probability of winning will decrease.
Taking these strategies as given, we now turn to the buy-

it-now decision. Intuitively, one expects the BIN option to
be more attractive to higher types: they have the most to
lose from either random allocation (they may not get the
good even if they are willing to pay the most) or from rivals
taking the BIN option (they certainly do not get the good).
This suggests that in equilibrium, the BIN decision takes a
threshold form: ∃ v such that types with v ≥ v elect to BIN,
and the rest do not. This is in fact the case.
Prior to stating a formal theorem, we introduce the fol-

lowing notation. Let the random variable Y j be the j-th
highest valuation from n − 1 iid samples from F (the j-th
highest rival bid); and let Y ∗ be the maximum of Y d and
the TAC reserve r.

Theorem 1 (Equilibrium Characterization).
Assume p ≤ d−1

d
ωH + 1

d
E[Y ∗]. Then there exists a unique

pure strategy Bayes-Nash equilibrium of the game, charac-
terized by a unique threshold v satisfying:

v = p+
1

d
E
[
v − Y ⋆|Y 1 < v

]
(1)

Types with v ≥ v take the BIN option; and all types bid their
valuation in any auction that may occur.

Equation (1) is intuitive: At what point is a bidder indif-
ferent between the BIN and TAC options? The only time the
choice is relevant is when there are no higher valuation bid-
ders (since they would win the BIN auction). So if a bidder
has the highest value and chooses to BIN, they get a surplus
of v− p. Choosing to TAC gives 1

d
E
[
v − Y ⋆|Y 1 < v

]
, since

they only win with probability 1
d
, although their payment

of Y ∗ is on average much lower. Equating these two yields
Equation (1). The assumption that p ≤ d−1

d
ωH + 1

d
E[Y ∗]

rules out uninteresting cases where the BIN price is so high
that no-one ever chooses BIN.
Now we consider the revenue-maximizing choices of the

design parameters: the BIN price p, the TAC reserve r and
the TAC parameter d. One way to think about the BIN
price is as a reserve, where bidders who fail to meet the

reserve still have some chance of participation. Perhaps un-
surprisingly, we get some familiar looking equations for the
optimal reserves. Again, we must introduce some notation.
For k = 0, 1, let RTAC

k (d, r) be the expected revenue from
the TAC auction when all bidders participate, but only k
bidders have high valuation. Then we have the following
theorem.

Assumption 1. v − 1−F (v)
f(v)

is continuous and increasing

in [ωL, ωL] and in [ωH , ωH ].

Theorem 2 (Optimal BIN-TAC Reserves).
Under Assumption 1, the revenue-maximizing TAC reserve
r is independent of d and p, and satisfies:

r⋆ =
1− F (r⋆)

f(r⋆)
(2)

If a solution exists with v(p⋆, d, r) ∈ [ωH , ωH ], then the op-
timal BIN price is given by:

p⋆(d, r) = RTAC
1 (d, r) +

(
d− 1

d

)
1− F (v(p⋆, d, r))

f(v(p⋆, d, r))
. (3)

Otherwise, p⋆ solves v(p⋆, d, r) = ωH :

p⋆(d, r) =
d− 1

d
ωH +

1

d
E[Y ⋆|Y 1 < ωH ] (4)

Equation 2 is somewhat surprising; the optimal TAC re-
serve is exactly the standard reserve in [13], ensuring that no
types with negative virtual valuation are ever awarded the
object. This is despite the fact that our BIN-TAC mecha-
nism is not the optimal mechanism.

The key insight is that the TAC reserve is relevant for the
BIN choice. Raising the TAC reserve lowers the surplus from
participating in the TAC auction, and so one can also raise
the BIN price while keeping the indifferent type v constant.
So the trade-off is exactly the usual one: raising the TAC
reserve extracts revenue from types above r⋆ — even those
above v — at the cost of losing revenue from the marginal
type. This is why we get the usual solution.

On the other hand, the optimal BIN price is non-standard.
To get some intuition, notice that the BIN price is only
relevant when there is a single bidder with valuation above
v. Then the first term in the RHS can be interpreted as
an “outside option” — if the good doesn’t sell by buy-it-
now, the seller gets to hold a TAC auction with expected
revenue RTAC

1 (d, r). To this outside option, the seller adds

a “markup” term of 1−F (v)
f(v)

. This markup is weighted down

by d−1
d

since a small increase in v doesn’t increase revenue
one-for-one.

We note that in many cases, there is no interior solution
for p⋆. Whenever the high valuations are substantially larger
than the low valuations (i.e. ωH ≫ ωL) it is not profitable to
randomize the allocation for high types by setting v(p, d, r) ∈
[ωH , ωH ], since the efficiency loss would be large. In this case
p⋆ is set so that the lowest high type at ωH is indifferent
between TAC and BIN.

3.3 Performance Comparisons
We would like to compare our mechanism to two bench-

mark mechanisms, the optimal mechanism, and the second
price auction with reserve r⋆. Yet as we noted in section 3.1,
we need to use an ironing procedure to get the optimal
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mechanism. This ironing procedure, outlined in the ap-
pendix, yields the ironed virtual valuations φ(v) defined be-
low. We observe that if αωH ≥ r⋆(1 − F (r⋆)), then, the
optimal mechanism is a second-price auction with reserve
ωH . Now, assume αωH < r⋆(1− F (r⋆)). Then, there exists
v⋆, r⋆ ≤ v⋆ ≤ ωL, such that

(2− α− F (v⋆))F (v⋆) + α(ωH − v⋆)f(v⋆) = 1− α (5)

where r⋆ is defined in Eq. (2). This defines the ironed virtual
valuations as follows:

φ(v) =







0 v ∈ [ωL, r
⋆)

ψ(v) v ∈ [r⋆, v⋆]

ψ(v⋆) v ∈ (v⋆, ωH)

ψ(v) v ∈ [ωH , ωH ],

(6)

Ironed Mechanism: Award the good to the bidder with
the highest ironed virtual valuation, breaking ties uniformly
at random, provided the virtual valuation is positive. Let
w1 be the valuation of the winning bidder; let w2 be the
valuation of the bidder with the second-highest virtual val-
uation (again break ties randomly). The payments are de-
termined as follows. Let k be the number of bidders with
bid in [v∗, ωH). Then the price for the winning bidder is
computed as follows:

w1 ∈ [r⋆, v⋆) : p = max{w2, r
⋆}.

w1 ∈ [v⋆, ωH) : p =

{
max{w2, r

⋆} If k = 1,
v⋆ otherwise.

w1 ∈ [ωH , ωH) : p =







max{w2, r
⋆} If w2 ≤ v⋆,

1
k+1

(kωH + v⋆) If w2 ∈ [v⋆, ωH),
w2 otherwise.

Over the “ironed” region [v⋆, ωH) allocation probabilities
are constant, and consequently the expected payment of a
winning bidder is also constant.

Theorem 3 (Optimal Mechanism). Suppose Assump-
tion 1 holds and ψ(ωL) ≤ ψ(ωH). If αωH ≥ r⋆(1− F (r⋆)),
then the optimal mechanism is the second-price auction with
reserve ωH . If αωH < r⋆(1 − F (r⋆)), then the ironed-
mechanism described above is optimal.

The main challenge in proving this theorem is computing
v⋆. The difficulty in even this relatively simple case lends
force to our claim that BIN-TAC is a useful mechanism for
these kinds of environments.
Having obtained this characterization, we can compare

the BIN-TAC mechanism with the optimal mechanism. Un-
der Assumption 1, it is easy to prove that as either n→ ∞,
α→ 1 or wH/wL → ∞, the BIN-TAC mechanism converges
to the optimal mechanism. This, however, is not particularly
interesting (a second-price mechanism will also converges to
optimal). The interesting cases, both theoretically and in
practice, occur for small values of the above parameters. It
is here that BIN-TAC simulates OPT much better than the
optimal second price auction.
For concreteness, we assume FL is the uniform distribu-

tion over [0, 1], and FH is the uniform distribution over
[τ, τ + 1], τ ≥ 3. By Theorem 3, we have

r⋆ =
1

2(1− α)
and v⋆ =

(

1−

√

α(τ − 1)

1− α

)

.
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Figure 4: Characterization of OPT, SPA and BIN-TAC

mechanisms when the distributions FL and FH are uni-

form. The x-axis corresponds to the bid.

Also, recall that the optimal second-price auction is equiv-
alent to a BIN-TAC mechanism with d = 1. The table be-
low, compares the expected revenue and welfare obtain by
these mechanisms for n = 5 and τ = 3. In addition, Fig-
ure 3.3, depicts the probability of allocation and expected
payment of a bidder assuming the value of the other 4 bid-
ders distributed according to the distribution described above.

Mechanism: OPT SPA BIN-TAC, d=2 BIN-TAC, d=3

E[Revenue] 0.89 0.76 0.85 0.83
E[Welfare] 1.40 1.43 1.33 1.23

4. SIMULATIONS
The BIN-TAC mechanism can be applied in a much wider

context than considered thus far. Specifically, we no longer
make the assumption that FL and FH have disjoint support.
Since the BIN-TAC mechanism is uniquely determined by
the three parameters r∗, d∗, and p∗, it is much easier to
calculate than the optimal mechanism. The reserve price
r∗ can be calculated according to the analysis presented in
Section 3 as long as Assumption 1 holds. Unfortunately, the
analysis for p∗ and d∗ do not follow when FL and FH have
disjoint support. However, for any fixed d∗, numerically
finding p∗ is a one dimensional optimization problem. Since
there are linearly many possible d∗, this makes the problem
very tractable. Additionally, the performance of BIN-TAC
is still good.

We first demonstrate this by simulating the mechanism
on two distributions where FL and FH do not have disjoint
support. The optimal mechanism is much more complex,
we can no longer easily compare to the optimal mechanism.
Instead, we do the following: Let MAX be the maximum
amount of revenue extraction possible; i.e. the revenue ac-
quired if the bidder with the highest valuation wins and pay
exactly his valuation. MAX, though unattainable, domi-
nates the optimal revenue, and gives us a useful and com-
putable baseline. To show the effectiveness of BIN-TAC, we
compare it to the optimal second price auction, and report
the revenue of both as a percentage of MAX.
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(a) Vary n from 3 to 25.
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(b) Vary α from 0 to .3.
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(c) Vary ∆ from 1 to 15.

Figure 5: Our simulations show BIN-TAC outperforming a second price auction, often significantly.

For our simulations, we restrict ourselves to location fam-
ilies where the distribution FH(·) = FL(· − ∆) for some
shift-parameter ∆. This ∆ is the difference in mean val-
uation between the high and low groups. We consider two
different location families; FL ∼ N , FL ∼ logN , where both
have mean 1 and variance 0.5. We allow ∆, n and α to vary
across experiments, and compute r∗, p∗ and d∗ as discussed
above. The results are presented in Figure 5.
The default parameters we consider are n = 10, ∆ = 10,

and α = .05, and we vary one parameter at a time. Each
experiment is repeated for 1000 impressions, and we report
the average. Recall that BIN-TAC generalizes the second
price auction, so its performance is always at least as good,
and often significantly better. Figures 5(a) and 5(b) show
how as either n or α increases, we approach optimal. This
is because the expected number of bidders that can target
is αn. As this increases, the lower distribution becomes ir-
relevant, and the second price auction is once again a good
approximation of optimal— i.e., there is no room for im-
provement. The same phenomenon can be seen for small α;
here, the high distribution becomes irrelevant and again the
a second price auction approximates the optimal mechanism.
However, in between the two extremes, our mechanism per-
forms significantly better. Figure 5(c) shows the dependence
on the gap ∆. As expected, the performance of BIN-TAC
increases while that of a second price auction decreases as
∆ gets larger. Since there is more revenue to be gained
from high-valued bidders, BIN-TAC can only performs bet-
ter with a large ∆. However, a second price auction would
have to find a tradeoff between losing low-valued impressions
and extracting revenue from high-valued impressions, hence
hurting its performance.

5. ANALYSIS OF ADECN DATA
We now test our mechanism’s performance in a real-world

setting. Specifically, we recover the valuations of advertisers
in the AdECN market introduced in Section 2 from their ob-
served bids, and then simulate their counterfactual bidding
behavior under our BIN-TAC mechanism. This allows us
to see whether our mechanism has the potential to improve
platform revenues, and tests it in a less stylized environment
then that of our theoretical model.
Our dataset consists of all bids submitted on all products

sold by a single publisher over a 24-hour period. We re-
stricted analysis to the subset of products that averaged at
least two bidders per impression, since with zero or one bid-
ders the BIN-TAC approach is not viable (the threat of ran-
domization is meaningless). This left us with ten products
(placements), with bidding patterns summarized in Table 1.
Over 1M impressions were sold, with participation ranging

from 3-6 bidders per auction. Bids vary widely: the average
bid below the 95th percentile is 0.07 while the average bid
above it is 0.8, over 10 times greater. Sample skewness is
consistently high, even when disaggregated by product. We
note two other facts. First, the correlation of bids within an
auction is consistently small, no higher than 0.09, and often
negative. This suggests that bidder valuations are private,
perhaps driven by idiosyncratic match quality, rather than
a common component. Second, the autocorrelation within
bids for a given bidder is also small, no higher than 0.02,
again suggesting that there are no dynamic patterns in the
evolution of bidder valuations, and the bids do not correlate
with time of day.

Since the current auction format is a second price auction
with reserve, we can infer the distribution of valuations di-
rectly from the bids, since they should be equal (we observe
bids even when they fall below the reserve). We first nor-
malize the bids on each product by the mean bid on that
product, calculating this mean using the first 10% of our
data, which was randomly selected for training purposes.
Then we can estimate the density of normalized valuations.

Before running the counterfactual simulations, we must
choose the optimal TAC reserve r, TAC parameter d and
BIN price p. In principle, we could do this product-by-
product. Instead, we use a single set of parameters for all
the different products, “un-normalizing” our chosen normal-
ized reserve r and BIN price p by multiplying by the product
means to get something more individual specific. This pro-
vides a much stronger test of our approach, since we could
certainly do better by conditioning our parameter choices
on the individual product valuation densities. In addition,
it has the advantage of being simpler, allowing a way to
calculate parameters for very thin or new markets, and in-
creasing incentive compatibility in practice.

Following our theory, we choose the reserve price r as the
first time the virtual valuations are positive, as calculated
from our training data. Note that this may not be opti-
mal. We also fix d = 2, since the market is relatively thin.
Since the data does not literally follow a mixture model,
the optimal BIN-TAC price must be calculated numerically
using the training data. Our counterfactual simulations —
the procedure for which is outlined below — are run on the
remaining 90% of the data, thus avoiding a potential over-
fitting problem in our parameter choices.

The simulation procedure is as follows. For some fixed
parameter choices (d, r, p), we calculate the indifferent type
vj for each product j = 1 · · · 10 numerically. This requires
solving for a solution to the implicit Equation 1 by itera-
tive methods. As an input into this calculation we need the
distribution of Y ∗ conditional on Y 1 < v; we take this dis-
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Products: All 1 2 3 4 5 6 7 8 9 10

# Bids 2592025 30038 482190 406181 224417 2913 5917 711368 717 241397 486887
# Impressions 1145871 18505 223028 256084 103034 876 4048 215570 193 107791 216742
# Bidders 6 3 4 3 4 5 3 5 5 3 3
% Total Bid Value 100 1.10 11.2 15.5 4.98 0.28 0.16 51.9 0.08 3.95 10.8
Avg Bid 0.114 0.108 0.069 0.113 0.066 0.281 0.078 0.216 0.340 0.049 0.066
σ Bid 0.46 0.097 0.075 0.15 0.049 0.46 0.074 0.34 0.50 0.52 0.88
5th percentile 0.011 0.013 0.010 0.015 0.020 0.001 0.017 0.021 0.010 0.010 0.10
95th percentile 0.341 0.193 0.230 0.572 0.115 1.500 0.150 1.186 1.500 0.098 0.120
Avg Bid above 95th 0.796 0.349 0.353 0.677 0.200 1.500 0.341 1.472 1.500 0.232 0.172
Avg Bid below 95th 0.070 0.094 0.054 0.082 0.057 0.137 0.064 0.150 0.210 0.038 0.033
Sample Skew 164.8 10.4 3.59 3.10 5.72 2.08 3.48 2.75 1.72 183.5 107.2
Correlation -0.012 -0.033 0.055 0.043 0.010 0.038 -0.044 0.084 -0.021 0.004 0.001
Autocorrelation 0.003 0.012 0.0002 -0.002 -0.004 0.013 0.020 -0.001 -0.009 -0.001 0.001

Table 1: Monetary units are cents. Statistics for the data set used in our experiment, which consisted of one publisher

and all products with at least two bidders per impression on average over a 24-hr time period.

Mechanism: AdECN Opt SPA BIN-TAC

Total Rev 761.8 851.8 945.6
% from BIN 0 0 53.6
% Imp Unallocated 0.001 0.014 0.017

Table 2: Counterfactual revenue results (in dollars) for

the mechanisms in question. AdECN is the mechanism

currently used by AdECN. Opt SPA is the second-price

auction with optimal reserve (r = 0.067). BIN-TAC uses

this same reserve, d = 2, and the optimal price p = 3.8.

tribution straight from the data. The main assumption we
are making here is that bidders believe the environment to
be symmetric and iid, since then our calculated vj correctly
summarizes their incentives. This appears to be a reasonable
assumption since there is little bid correlation and autocor-
relation, although the symmetry assumption is probably too
strong. To get the simulated BIN-TAC outcomes, we re-run
the auctions in turn, assuming the highest bidder takes the
BIN option if their valuation is above vj , and otherwise the
object allocation is randomized between the top two high-
est bidders. We run this procedure on the training data for
various p in order to determine p⋆.
Once these parameters have been determined, we run the

mechanism on the remaining 90% of the data to calculate
counterfactual revenues. For comparison purposes, we also
look at the optimal SPA, the second-price auction with re-
serve r∗. We find r∗ numerically, and somewhat surprisingly
r is very close r∗ (the first time the virtual valuations are
positive). 2 Thus, the optimal reserve price for the SPA
for our data is the first time the virtual valuation is non-
negative. The results are shown in Table 2. Notice that a
large fraction of the revenue in the BIN-TAC mechanism is
coming from the BIN prices: this right tail of valuations con-
tributes 53.6%. This reflects the skewness in the observed
valuations. The main finding is that the BIN-TAC mecha-
nism increases revenues by 11% relative to the optimal SPA,
which in turn improves on the current AdECN mechanism
by 11%. This demonstrates the BIN-TAC mechanism is ef-
fective in extracting revenue, yet still allows targeting.

2See [14] for a further discussion on reserve prices.
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APPENDIX

A. PROOF OF THEOREM 1
Consider the payoffs to taking BIN, denoted by πB(v),

and to TAC, denoted by πT (v), in this equilibrium. They
are given by:

πB(v) = E
[
1(v > Y 1 > v)(v − Y 1)

]

︸ ︷︷ ︸

Rival chooses BIN

+E
[
1(Y 1 < v)(v − p)

]

︸ ︷︷ ︸

No rival chooses BIN

πT (v) = E

[

1(Y 1 < v)1(Y ⋆ < v)
1

d
(v − Y ⋆)

]

The threshold type v must be indifferent, so

πB(v) = E
[
1(Y 1 < v)(v − p)

]
(7)

= E

[

1(Y 1 < v)
1

d
(v − Y ⋆)

]

= πT (v).

We next show that no other type wants to deviate. Suppose
v > v. Then:

πB(v) = E[1(v > Y 1 > v)(v − Y 1)]

+E[1(Y 1 < v)(v − v)] + E[1(Y 1 < v)(v − p)]

≥ E[1(Y 1 < v)(v − v)] + πT (v)

= E[1(Y 1 < v)(v − v)] + E[1(Y 1 < v)
1

d
(v − Y ⋆)]

≥
1

d

(
E[1(Y 1 < v)(v − v)] + E[1(Y 1 < v)(v − Y ⋆)]

)

= πT (v)

Similarly, for v < v, we have:

πT (v) = E

[

1(Y 1 < v)1(Y ⋆ < v)
1

d
(v − Y ⋆)

]

≥ E

[

1(Y 1 < v)
1

d
(v − Y ⋆)

]

=
1

d
E
[
1(Y 1 < v)(v − Y ⋆)

]

−
1

d
E
[
1(Y 1 < v)(v − v)

]

By combining this with Eq. (7), we get,

πT (v) ≥ E
[
1(Y 1 < v)(v − p)

]
− E

[
1(Y 1 < v)(v − v)

]

= πB(v)

Next, we show a v satisfying Eq. (1) exists and is unique.
Suppose d > 1. Then the right hand side of Eq. (1) is a
function of v with first derivative 1

d
(1− ∂

∂v
E[Y ⋆|Y 1 < v]) <

1. Since at v = 0 it has value p > 0 and globally has slope
less than 1, it must cross the 45◦ line exactly once. Thus
there is exactly one solution to the implicit Eq. (1). On the
other hand, suppose d = 1; then by assumption p < E[Y 1].
Hence, Eq. (1) simplifies to E[Y 1|Y 1 < v] = p, which has a
solution since E[Y 1|Y 1 < v] = p < E[Y 1].

Finally, we need to argue there are no other pure strategy
equilibria. Let A be the set of types who elect BIN, vA be the
infimum of this set and vB be the supremum of its comple-
ment. Since v is uniquely defined, any such equilibrium can-
not have a threshold form, so vB > vA. Then reasoning sim-
ilar to the above shows that vA − p ≥ 1

d
E[vA − Y ⋆|Y−i 6∈ A]

but vB − p < 1
d
E[vB − Y ⋆|Y−i 6∈ A], which implies vB < vA,

a contradiction.

B. PROOF OF THEOREM 2
TAC Reserve: Fix (r, d) and v ∈ (ωL, ωH). Then define

p(r) implicitly as the BIN price that holds v constant as r
changes. The effects of increasing the reserve r slightly are
two: first, if only one person has valuation above v, you
can charge them a slightly higher BIN price; second, if all
bidders have low valuation, increasing the reserve may raise
the expected payment of some types, while decreasing the
probability the object will be sold.

The marginal increase in revenue due to the first effect is:

nα(1− α)n−1 1

d
Pr(Y d ≤ r)

If there are no BIN bidders, we look at the expected pay-
ment from each of the k highest bidders:

(1− α)n
1

d

d∑

k=1

[ d∑

j=k

(

n

j

)

(1− FL(r))
jFL(r)

n−jr

+

∫ v

r

n!

d!(n− 1− d)!
f(s)FL(s)

n−d−1(1− FL(s))
dds

]

Taking a first order condition in r, canceling telescoping
terms and simplifying the double summations:

(1−α)n
1

d

d∑

k=1

(

n

k

)

k(1−FL(r))
k−1FL(r)

n−k (1− FL(r)− rfL(r))

Summing both marginal effects, expanding P (Y d ≤ r) we
set the following equation to zero:

nα

(
d−1∑

j=0

(

n− 1

j

)

(1− FL(r))
jFL(r)

n−1−j

)

+

(1− α)

d∑

k=1

(

n

k

)

k(1− FL(r))
k−1FL(r)

n−k (1− FL(r)− rfL(r))

Changing the summation limits, factorizing and eliminating
constants:

α+ (1− FL(r)− rfL(r)) (1− α) = 0

WWW 2011 – Session: Monetization I March 28–April 1, 2011, Hyderabad, India

154



Since FL(r) = 1
1−α

F (r) and fL(r) = 1
1−α

f(r) we get r⋆ =
1−F (r⋆)
f(r⋆)

. Note that by Assumption 1, this point is unique.

BIN Price: Let H be the total number of bidders with
high valuations. Also, let V j be a random variable cor-
responding to the j-th highest valuations among the bid-
ders. Define tH(d, r, j) to be the expected revenue obtained
from the bidder with the j-th highest valuations among the
bidders, conditioned that H agents have high valuations.
Namely,

t0(d, r, j) =
1

d
Pr(V j > r|H = 1)E[max(V d+1, r)|V j > r,H = 1]

t1(d, r, j) =
1

d
Pr(V j > r|H = 0)E[max(V d+1, r)|V j > r,H = 0]

The revenue function when H ≤ 1 is:

π(d, p, r) = nα(1− α)n−1

(

(1− FH(v))p+ FH(v)
d∑

j=1

t1(d, r, j)

)

+ (1− α)n
d∑

j=1

t0(d, r, j)

Now since p = d−1
d
v+ 1

d
E[Y ⋆|Y 1 < v] = d−1

d
v+t1(d, r, 1),

we can substitute to get:

π(d, p, r) = nα(1− nα)[(1− FH(v))
d− 1

d
v + t1(d, r, 1)

+FH(v)
d∑

j=2

t1(d, r, j)] + (1− nα)
d∑

j=1

t0(d, r, j)

Taking a first order condition of the right hand side in
v ∈ [ωH , ωH ]:

d− 1

d
((1− FH(v))− fH(v)v) + fH(v)

(
d∑

j=2

t1(d, r, j)

)

= 0

Re-arranging terms:

v −
(1− FH(v))

fH(v)
=

d

d− 1

(
d∑

j=2

t1(d, r, j)

)

Note that by Assumption 1, if there exists a solution, it is
unique. Solving for v:

v =
d

d− 1

d∑

j=2

t1(d, r, j) +
(1− FH(v))

fH(v)

or in terms of p:

p⋆ =

d∑

j=1

t1(d, r, j) +
(d− 1)(1− FH(v))

dfH(v)

= RTAC
1 (d, r) +

(d− 1)(1− F (v))

df(v)

If there exists no interior solution that satisfies the first
order condition, then v = τ .

C. PROOF OF THEOREM 3
We prove the theorem using the approach proposed by

Myerson [13]. Some definitions are in order to describe
the ironing approach; for the sake of consistency, we would

use the same notation as [13]. This approach requires that
the distribution of the values, F , to be strictly increasing.3

Hence, we consider the following distribution of the values.

fε(x) =







βfL(x) x ∈ [ωL, ωL]

ε x ∈ (ωL, ωH)

fH(x)α x ∈ [ωH , ωH ]

Fε(x) =







βFL(x) x ∈ [ωL, ωL]

β + ε(x− ωL) x ∈ (ωL, ωH)

(1− α) + αFH(x− ωH) ∈ [ωH , ωH ]

where β + ε(ωH − ωL) + α = 1. Hence, as ε tends to 0 we
get the original model back. Myerson [13] showed that if

ψε(x) = x− 1−Fε(x)
fε(x)

is strictly increasing, then, the optimal

mechanism would always allocate the item to the bidder
with the maximizes ψ(·). However, if this function is not
increasing, then one needs to “iron” the virtual values. Note
that for x ∈ (ωL, ωH), and small enough ǫ,

ψε(x) = x−
1− (β + ε(x− 1))

ε
< 0 ≤ ψε(r

⋆)

For q ∈ [0, 1], let F−1
ε (q) be the inverse of Fε(·). Define:

h(q) = F−1
ε (q)−

1− q

fε
(
F−1
ε (q)

)

H(q) =

∫ q

0

h(y)dy

G(q) = convH(q)

= min
λ,r1,r2∈[0,1],λr1+(1−λ)r2=q

{λH(r1) + (1− λ)H(r2)}

This implies that G(·) is the highest convex function on [0, 1]
such that G(q) ≤ H(q) for every q.

Define φ(v) = G′(F (v)) as the virtual value of type v.
By Theorem 6.1 [13], the optimal mechanism randomly al-
locates the item to one of the bidders with the highest pos-
itive virtual value. In the following, we compute the virtual
values.

Lemma 1. Let q⋆ = (1− α)v⋆ and v⋆ be the solution of

−F 2(v⋆) + (2− α)F (v⋆) + α(ωH − v⋆)f(v⋆) = 1− α.

Under the assumption of Theorem 3, as ε→ 0,

G′(q) =







h(q) q ∈ [0, q⋆]

h(q⋆) q ∈ (q⋆, 1− α)

h(q) q ∈ [1− α, 1]

Proof. First note that H(q) is convex in [0, β] because

of the assumption that x− 1−F (x)
f(x)

is increasing in [ωL, ωL].

It is also decreasing in [0, q0] and increasing in [q0, β], where
q0 = F (r⋆) is the minimum of H(·) in this range. Also,
observe that H(q) is decreasing in [β, 1− α] because h(q) <
0 in this interval. In addition, by Assumption 1, H(q) is
increasing and convex in [1−α, 1]. Therefore, G(·) includes
the tangent line from the point (1−α,H(1−α)) to H(q) in

3 See [11, 15] for optimal mechanisms when distributions
have discrete support.
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[0, β]. Let q⋆ be the tangent point. We have

G(q) =







H(q) q ∈ [0, q⋆]
(q−q⋆)H(q⋆)+(1−α−q)H(1−α)

1−α−q⋆
q ∈ (q⋆, 1− α)

H(q) q ∈ [1− α, 1]

which immediately leads to the claim. In the rest we com-
pute q⋆. For q ∈ [0, β],

H(q) =

∫ q

0

(

F−1
ε (y)−

1− y

fε
(
F−1
ε (y)

)

)

dy

=

∫ F−1(q)

ω
L

(

x−
1− Fε(x)

fε(x)

)

fε(x)dx

=

∫ F−1(q)

ω
L

((xfε(x) + Fε(x))− 1) dx

= (q − 1)F−1
ε (q) + ωL

In particular,

H(β) = (β − 1)ωL + ωL

For q ∈ (β, 1− α), because h(q) = 2q−(1+β)
ε

+ ωL, we get

H(q) = H(β) +

[
x2 − (1 + β − εωL)x

ε

]q

β

= (β − 1)ωL + ωL +
q2 − β2 − (q − β)(1 + β − εωL)

ε

= (q − 1)ωL + ωL + (q − β)
q − 1

ε
(8)

In particular,

H(1− α) = −αωL + ωL + (1− α− β)
−α

ε
= −αωH + ωL

To iron the distribution, we compute the tangent from
H(1 − α) to the H(q), for q ∈ [0, 1 − α]. Note that if q⋆ is
the tangent point then

h(q⋆) =
H(1− α)−H(q⋆)

1− α− q⋆
(9)

Observe that by Eq. (8) we have

H(1− α)−H(q⋆)

1− α− q⋆

=
(−αωH + ωL)−

(
(q⋆ − 1)F−1

ε (q⋆) + ωL

)

1− α− q⋆

=
−αωH − (q⋆ − 1)F−1

ε (q⋆)

1− α− q⋆

Let v⋆ = F−1
ε (q⋆), i.e., q⋆ = Fε(v

⋆) = βFL(v
⋆). There-

fore,

H(1− α)−H(q⋆)

1− α− q⋆
=

−αωH − (Fε(v
⋆)− 1)v⋆

1− α− Fε(v⋆)

h(q⋆) = v⋆ −
1− Fε(v

⋆)

fε(v⋆)

As ε→ 0, the Fε(·) → F (·). Plugging into Eq. (9) we get

(v⋆f(v⋆)− 1 + F (v⋆))(1− α− F (v⋆))

= f(v⋆)
(
−αωH − (F (v⋆)− 1)v⋆

)

Hence, rearranging the terms,

−F 2(v⋆) + (2− α)F (v⋆) + α(ωH − v⋆)f(v⋆) = 1− α

Observe that only if H(1 − α) > H(q0), then h(q⋆) is
positive.

−αωH + ωL ≥ (q0 − 1)F−1 (q0) + ωL = (F (r⋆)− 1)r⋆ + ωL

This is equivalent to αωH ≤ (1− F (r⋆))r⋆.
Finally, observe that

h(q⋆) ≤ h(β) = ωL ≤ ωH −
1− Fε(ωH)

fε(ωH)

which shows thatG(·) is convex and completes the proof.

By the above lemma, if αωH ≤ (1−F (r⋆))r⋆, the (ironed)
virtual value of a bidder with value v by φ(v) is defined in
Eq. (6). Note that for v ∈ [0, r⋆) the virtual value is in
fact negative, but because the mechanism only allocates to
positive virtual values, it is equivalent to let the virtual value
equal to 0. Also, note that if v⋆ < r⋆, then the mechanism is
equivalent to the second-price mechanism with reserve ωH .
Now we describe the payments, assuming v⋆ > r⋆.

Let v denoted the vector of valuations (bids) of bidders.
By [13], the expected payment of each bidder i, pi, is:

pi(v) = vi −

∫ v

0

ρi(x, v−i)dx (10)

where ρi(x, v−i) is the probability of allocation to bidder i
with value x, when the values of other bidders is v−i.

Recall that the optimal mechanism awards the good to
the bidder with the highest virtual valuation, breaking ties
randomly, provided the virtual valuation is positive. Let w1

be the valuation of the winning bidder; let w2 be the valua-
tion of the bidder with the second-highest virtual valuation
(again break ties randomly).

Also let k be the number of bidders with bid in [v∗, ωH).
Then, by Eq. (10), the price for the winning bidder is com-
puted as follows:

w1 ∈ [r⋆, v⋆): By Eq. (10),

p = w1 −

∫ w1

0

ρi(x, v−i)dx = w1 −

∫ w1

max{w2,r
⋆}

1 dx

Because the probability of the allocation before max{w2, r
⋆}

is 0 and after that is 1,

p = w1 −

∫ w1

max{w2,r
⋆}

1 dx

Therefore, p = max{w2, r
⋆}.

w1 ∈ [v⋆, ωH): If k = 1, similar to the previous case,
p = max{w2, r

⋆}. Otherwise, by Eq. (10), the expected
payment of each bidder with vi ∈ [v∗, ωH) is 1

k
v⋆. This

is equivalent to charging the winner v⋆.

w1 ∈ [ωH , ωH ]: If w2 ≤ v⋆ or w2 ≥ ωH then similar to
the first case, p = max{w2, r

⋆}. If w2 ∈ [v⋆, ωH), then
p = 1

k+1
(kωH + v⋆).

p = w1 −

∫ w1

0

ρi(x, v−i)dx

= ωH −

∫ ω
H

v⋆

1

k + 1
dx

=
1

k + 1
(kωH + v⋆) .
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