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Abstract

Advances in communication and transportation technologies have the
potential to bring people closer together and create a ‘global village’. How-
ever, they also allow heterogenous agents to segregate along special interests
which gives rise to communities fragmented by type rather than geography.
We show that lower communication costs should always decrease separation
between individual agents even as group-based separation increases. Each
measure of separation is pertinent for distinct types of social interaction. A
group-based measure captures the diversity of group preferences that can
have an impact on the provision of public goods. An individual measure
correlates with the speed of information transmission through the social
network that affects, for example, learning about job opportunities and new
technologies. We test the model by looking at coauthoring between academic
economists before and during the rise of the Internet in the 1990s.
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1 Introduction

Do new communication technologies on balance bring us closer together, or do they
push us apart? Observers greeted the introduction of new transportation technolo-
gies such as the railroad and the automobile on the one hand, and the spread of
electronic communication such as the telephone and electronic mail on the other
hand with the expectation that they would help overcome geographic boundaries
and therefore draw communities closer together.1 However, advanced communi-
cation technologies can create new divisions by making heterogenous agents more
selective. If agents prefer to communicate with agents of their own type, commu-
nities will fragment along types rather than geographic location. The automobile
and the telephone strengthened social interactions based on common interests and
along generational lines.2 Furthermore, the very development of the technological
underpinnings of the Internet, emailing and the World Wide Web, were driven
by the desire to facilitate cooperation between scattered groups of specialized re-
searchers across the globe.3

We construct a simple theoretical model to explain how decreasing communica-
tion costs can simultaneously decrease separation between agents in one dimension
and increase separation in another dimension. Each type of agents in our model
belongs to some group such as a political party, an ethnic community or an aca-
demic specialization or sub-fields. Agents prefer to collaborate with own-type
neighbors but they face a tradeoff between conducting costly collaboration with
distant own-type neighbors or starting less profitable projects with close distinct-
type neighbors. We then study two measures of separation between agents. Group
separation captures the separation between types of agents by looking at the share
of messages which are exchanged within groups rather than between groups. In our

1The telephone census of 1902 discusses the importance of both the telephone and the au-
tomobile in overcoming the isolation of rural life (Bureau of the Census, 1902). Amongst the
futurists who believe that advances in telecommunication will eventually make space obsolete are
Toffler (1980), Negroponte (1995) andMcLuhan (1994) who coined the term global village.

2Sproull and Kiesler (1991) describe how the spread of the telephone strengthened affiliation
among teenage peer groups. Lynd and Lynd (1929, chapter XIX, footnote 8) report in their
Middletown study the tendency of young people to mingle with peers in neighboring cities: “The
young people go miles away, but fail to get well acquainted with those near by.”. Social life in the
town became increasingly fragmented and centered around shared interests: club groups became
prominent and an increasing number of friends were recruited in these organized environments.
Lynd and Lynd (1929) interviewed a group of working class and business class wives. In the first
group, ten out of 173 friends were recruited in clubs, compared to two out of 116 friends of their
mothers. In the business class group 26 out of 75 friends were first met in clubs, compared to 6
out of 71 friends of their mothers. A similar trend holds for the husbands.

3Emailing was a by-product of the ARPANET program which was funded by the US defence
department. The HTML markup language of the World Wide Web was invented by Tim Berners-
Lee at CERN in an effort to make the information sharing between particle physicists easier
(Hafner and Lyon, 1996).
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model group separation always increases as communication becomes less expensive
because agents become selective: the desire to segregate into type-based groups
is the very reason agents communicate more with distant agents as costs fall. In
contrast, individual separation describes the distance between two randomly cho-
sen individual agents measured by the time it takes for news to travel between
these agents. A priori, lower communication costs have an ambiguous effect on in-
dividual separation. While the distance between agents of the same type is always
reduced, the increase in group separation makes it more difficult for news to reach
members of a different group. However, we show that for sufficiently large social
networks this latter effect is small and individual separation always decreases. This
result holds both for lattice social networks such as the circle and for small-world
networks that were popularized by Watts and Strogatz (1998). Small-world net-
works resemble real-world social networks much better than lattice graphs and can
be easily constructed from lattice graphs by adding a small number of ‘short-cuts’.
We prove that if individual separation in the underlying lattice graph decreases by
a factor a then it decreases in the corresponding small world graph by a factor

√
a.

Our concepts of individual and group separation allow us to decompose the
welfare effects of lower communication costs. Intuitively, our results on individual
separation imply that each agent who communicates more with distant neighbors
exerts a positive externality on every other agent by speeding up information trans-
mission. This allows agents to learn more quickly, for example, about job oppor-
tunities or technological innovations.(Granovetter, 1973; Udry and Conley, 2002).4

In contrast, the welfare effects of increased group separation are ambiguous. On
the one hand, the increase in within-group communication allows groups to more
easily form complementary institutions such as political organizations (i.e. the civil
rights movement, anti-globalization protest groups or environmental campaigns)
or new field journals in the case of academic specializations. These institutions
amplify the private benefits of increased communication with own-type neighbors.
At the same time, greater group separation gives rise to divergent group prefer-
ences because agents spend more time talking to like-minded neighbors. Increased
preference heterogeneity reduces mutual understanding between groups and makes
coordination across groups more difficult because of divergent social norms. Taste
heterogeneity has been associated with a decrease in public goods provision and
increased conflict between groups (Alesina, Baqir, and Easterley, 1999). Interven-
tions which reduce group separation have been shown to align agents’ preferences

4Granovetter (1973) was the first to emphasize the importance of friends and relatives as
sources of employment information. Montgomery (1991) reviews the case study evidence on job-
finding methods used by workers which suggests that approximately 50 percent of all workers
currently employed found their jobs through friends and relatives. Topa (2001) estimates a careful
structural model of the interaction effects in the Chicago labor market. Udry and Conley (2002)
illustrates the role of social networks in the spread of pineapple farming in Ghana.
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and promote empathy and cooperation.5

We demonstrate the differential impact of decreasing communication costs on
group and individual separation empirically by looking at changes in patterns of
coauthoring between academic economists. We believe that the results are inter-
esting in their own right and have implications for academic knowledge production
in a more connected world. Our data includes all coauthored papers in top eco-
nomic journals between the years 1969 and 1999. This time period covers the rise
of the Internet after the invention of the world wide web in 1991. It is a well docu-
mented fact that coauthoring, in particular coauthoring with distant collaborators,
increased strongly during this time period. We find that the relative probability of
realizing a potential project with a distant US collaborator increased by 30 percent
in the 1990s compared to the 1980s. We also show that the increased attractiveness
of long-distance collaborations made researchers more selective just as our model
predicts: they were 20 percent less likely to realize a project with a dissimilar
collaborator in the 1990s.

The paper most related to our work is van Alstyne and Brynjolfsson (1997)
who introduce the possibility of greater group separation as communication costs
decrease but do not formally analyze the relationship between group and individual
separation. Another related literature analyzes the impact of lower communication
costs on the relative use of specific communication technologies such as face to
face communication versus electronic communication (Gasper and Glaeser, 1998).
This approach is complementary to ours: while we assume a single communication
technology but heterogenous agents that paper looks at changes in the relative use
of different communication technologies amongst homogenous agents.

The remainder of the paper is organized as follows. Section 2 introduces a sim-
ple formal model. Section 3 defines our two distinct measures of separation which
capture the social distance between groups of people and between individuals.
Section 4 introduces our main result for lattice graphs which we extend to small-
world networks in section 5. In section 6 we measure separation of researchers
in academia using coauthoring and confirm the usefulness of our two measures.
Section 7 concludes.

5Duncan, Boisjoly, Levy, Kremer, and Eccles (2003) show that white students with randomly
assigned African-American roommates are more likely to support redistribution to the poor and
affirmative action. Gurin, Peng, Lopez, and Nagda (1999) also find a positive correlation between
the degree of interaction and declining racial stereotypes. Experiments in social psychology
demonstrate that cooperative activities between members of distinct groups tend to promote
tolerance (Sherif, Harvey, White, Hood, and Sherif, 1961; Aronson and Patnoe, 1997).
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2 The Basic Model

We build a very stylized model of communication with two different types of agents
who exhibit a preference for communication with their own type. There are 2n
agents (n > 3) who are located along a circle (see figure 1). One half of all agents
are of type A and the other half are of type B. Agents’ types alternate along the
circle: every type A agent has precisely two type B agents as direct neighbors and
vice versa.

We will refer to agent’s four neighbors who are located at most a distance two
away from her as her close neighbors and the remaining four neighbors who are
located at most a distance four away from her as her distant neighbors. Therefore,
each agent has a total of eight neighbors, and all other agents are non-neighbors.

2.1 Projects and Communication

Time is discrete and in each time period every agent can initiate projects with her
neighbors. A project can be, for example, coauthoring a research paper, a lunch
or dinner engagement, or merely a conversation. For simplicity, we assume that
the benefits of a project accrue only to the initiator of a project. However, this
assumption can be easily relaxed.

Each agent can start exactly four projects in each time period and can do at
most one project with each of her neighbors. Collaborating on a project requires
communication between both agents. We assume that the initiator has to send pre-
cisely one message to his partner. Moreover, communication with a close neighbor
is costless while sending a message to a distant neighbor has an (additive) cost C.

By choosing a lattice graph, we rely on the Euclidean notion of distance. There-
fore, the types of communication technologies that best fit our basic model are
those for which usage cost increases steeply with distance. Examples include the
automobile and telephony before the dramatic decrease in long-distance rates dur-
ing the second half of the 20th century.

An alternative notion of ‘close’ and ‘distant’ neighbors labels any agent who is
not close to be distant. This notion of distance better fits communication technolo-
gies such as modern long-distance telephony, the World Wide Web and emailing
with usage costs depending only weakly or not at all on geographical distance. We
will be able to analyze both types of communication technologies together when
we introduce small-world networks in section 5.

2.2 Preferences

Collaborating on a project with a distinct type neighbor gives utility U while a
partnership with an own type gives utility Ũ which is distributed over [U,∞) with
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cumulative distribution function F
(
Ũ

)
. The utility which can be derived from

each potential project is observable by agents before they initiate collaboration.
Because our model is symmetric in both types, we can restrict attention to

the decision making process of a type A agent. Clearly, a type A agent will
always collaborate with her two close own-type neighbors. The only tradeoff she
faces is whether to work on the remaining two projects with her two close type
B neighbors at zero cost, or start a more profitable project with her two distant
own-type neighbors and pay a communication cost C.

A type A agent will pay for costly communication with a distant type A neigh-
bor if the project has sufficiently high potential:

Ũ − C > U (1)

This will be the case with probability γ (C) = 1−F (U + C). Note that the prob-
ability γ (C) is decreasing in C: new means of communication which decrease the
cost C of sending messages make more projects with distant neighbors profitable.

In each time period our type A agent will make one of three decisions:

1. With probability (1− γ (C))2 communicating with her two distant type A
neighbors is not profitable enough to justify the higher cost of communication
and she will instead collaborate only with her four close neighbors. Hence
our type A agent will send half of her messages to own-type neighbors.

2. With probability 2γ (C) (1− γ (C)) exactly one of the two projects with dis-
tant type A neighbors is sufficiently promising to drop collaboration with a
close type B neighbor. She will send 75 percent of her messages to own-type
neighbors.

3. With probability γ (C)2 collaboration with both distant type A neighbors is
valuable enough to drop projects with both close type B neighbors. In this
case type A agent will communicate only with own-type neighbors.

In case (2) there is a small indeterminacy because the type A agent can stop
collaborating with either of her two close type B neighbors in favor of the more
profitable project with a distant own-type neighbor. As a tie-breaking rule we
assume that every agent of type A drops the project with her left (right) type B
neighbor if she wants to work instead with her distant left (right) type A neighbor.

Note that in our model the total number of projects started by an agent (and
hence the amount of communication she conducts in each period) is the same for
all communication costs C. In a richer environment, the effects of lower commu-
nication costs on the total volume of communication is ambiguous. On one hand,
agents substitute away from local projects towards less expensive long-distance
projects (the substitution effect). On the other hand, the lower overall cost of
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communicating allows agents to start more projects (the income effect). The total
amount of communication might therefore increase or decrease as a result. We
choose to abstract away from these effects.

We also do not consider endogenous location choice of agents. If agents could
costlessly pick their location before playing the communication game we would
expect agents of similar types to move together and maximize utility through local
communication alone. We acknowledge that the desire to live close to similar agents
gives rise to some degree of clustering, and that complete mixing is an analytically
convenient rather than a realistic assumption. However, complete segregation is
unlikely because the choice of location is influenced by many factors other than the
desire to be close to friends, such as career concerns, choice of school for children,
or idiosyncratic preferences for a certain location or apartment to name a few.

3 Measures of Separation

In this section we formally define group and individual separation and discuss
the welfare implications of changes in each measure. Our measures of group and
individual separation are closely related to the indices of ‘balkanized affiliation’ and
‘balkanized communication’ introduced by van Alstyne and Brynjolfsson (1997)
and van Alstyne and Brynjolfsson (1996).

3.1 Group Separation

Assume that agent i sends and expected number xij of messages to agent j 6= i in
every time period. We can then define the degree of group separation Π between
type A and type B as the share of total messages which are exchanged between
agents of the same type:

Π =

∑
i

∑
j 6=i J (i, j) xij∑
i

∑
j 6=i xij

(2)

The indicator function J (i, j) is defined as:

J (i, j) =

{
1 if i and j are of the same type
0 otherwise

(3)

Since our model is symmetric in types and agents, this group measure collapses to
the share of messages some single agent i sends to agents of the same type. Larger
values of Π indicate a greater degree of group separation. Society is completely
segregated into non-communicating communities if Π = 1. This case is excluded
as long as the cost of communication does not become zero.
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3.2 Individual Separation

Our second measure describes the degree of individual separation between two
random agents in our society. We define it with the following simple model of
information diffusion in mind. Assume at time t = 0 agent 1 has some brilliant
idea about a new technology, and she starts to share it with all of her four collab-
orators. We assume that the agent derives no utility from other agents using the
technology and also cannot demand payment from any other agent for relaying the
information.

Note that the share of messages sent to neighbors of her own type is exactly
Π (C), the degree of group separation. At the end of the first period, five agents
will know about the news: herself, two neighbors to her right and two neighbors to
her left. In the second period, each of these five agents will send two more messages
to her right and left neighbors, e.g. agents who already know about the superior
technology will continue to transmit to their neighbors. As long as communication
with distant neighbors is at least somewhat costly, (i.e. Π < 1) every agent j will
hear almost surely about the new technology.

This will take a random number of time periods T̃j. We then define the degree
of individual separation Sj between agent 1 (the originator of the idea) and some
agent j 6= 1 as the expected time it takes to communicate the news between those
two agents:

Sj = E
[
T̃j

]
(4)

The degree of separation Ŝ is defined as the average expected waiting time to reach
a random agent j:6

Ŝ =

∑n
j=2 Sj

n− 1
, (5)

Our definition of individual separation is closely related to the game called Six
Degrees of Separation that was popular on American campuses in the 1980s. The
aim of the game is to find the shortest path of acquaintances that connects two
randomly chosen players.7 In the context of our model, we can provide a more
realistic measure of individual separation that takes into account the strength of
links along the path.

6Due to the symmetry of our model the initial agent 1 (including her type) can be chosen
randomly on the network.

7The game was originally invented by a group of mathematicians who defined two agents to
be linked if they had a co-authored paper. The aim of the game was to find the shortest path
which linked the agent to the famous graph theorist and mathematician Paul Erdös.
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3.3 Separation Measures and Welfare

In order to understand the welfare effects of changes in the cost of communication
we decompose the total expected utility UTotal of an agent in each period as follows:

UTotal =
4∑

i=1

Ui + T − v(∆E) + w(I)︸ ︷︷ ︸
communication externality

(6)

The first term is simply the sum of utilities from the four projects which the
agent conducts with close or distant neighbors in each period. The next three
terms capture the communication externality that results from the collaboration
decisions of all other agents. It consists of three components - the benefit T of
transmitted ideas from other agents, the cost v(∆E) generated by differences ∆E
in group opinions and the benefit w(I) of institutions serving the needs of specific
groups.

We define the benefit T of transmitted ideas as follows. In each time period ev-
ery agent has an idea which can benefit exactly one other agent in the society. This
idea saves that agent a cost c per time period. The average loss from waiting for
this idea to reach its recipient is therefore T = −Ŝc which is equal to the expected
steady state loss. A decrease in individual separation therefore always improves
welfare by giving agents quicker access to cost-saving ideas8. Specific examples of
ideas are innovative technologies or information about job opportunities: in the
latter case we can interpret T , respectively, as the opportunity costs of using an
inferior technology and being matched to an inferior job (or no job at all).

In contrast, differences in group tastes and beliefs are affected by group sep-
aration. Greater group separation gives rise to more diverse group preferences
making collective decision-making more difficult. The public finance literature has
identified several possible channels. First, group separation can affect the tastes
of the median voter and, more generally, will increase the median distance from
the median voter. Alesina, Baqir, and Easterley (1999) show how such an increase
in the heterogeneity of preferences can reduce the provision of public goods in a
community. Second, Alesina and la Ferrara (2000) build a model of group forma-
tion to explain the empirical fact that participation in social activities and hence
social capital is lower in more heterogenous communities.

To illustrate the connection between group separation and group opinions we
present the following simple model. Each agent has a preference ηi for the type of

8Note that the total number of messages received by agents in the steady state in each time
period is constant across all communication costs because the flow of received messages has to
equal the flow of produced messages. Changes in communication costs only affect the distribution
of vintages of ideas. In particular, decreasing communication costs do not produce ‘spam’ in our
model
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public good which is provided in their community. A type A agent at time t has
taste ηt

i = αt
A + θt

i with real support and a type B agent has taste ηt
i = αt

B + θt
i .

It consists of two components: a type dependent component αt
A (αt

B) and an
idiosyncratic component θt

i . We assume that the idiosyncratic component is iden-
tically and independently distributed amongst agents and has mean 0. The type
dependent component captures the idea that the median preferences of voters in
each group differ a priori. For example, the young might prefer to spend money
on bicycle lanes and playgrounds while the old prefer to spend money on public
transportation and making buildings accessible for the disabled. Another exam-
ple would be the preferences of researchers in different subfields for what type
of research to fund: labor economists might prefer funding of large scale natu-
ral experiments while industrial economists prefer to collect better industry data.
Similarly, astronomers would like NASA to build bigger and better space telescopes
while particle physicists prefer to invest in accelerators.

Communication with neighbors affects preferences: we simply assume that the
final preference of an agent is a weighted average of her own taste ηi and those of
her neighbors with communication shares as the weights on her neighbors prefer-
ences. This captures the idea that an agent will be more heavily influenced by the
preferences of neighbors with whom she communicates more frequently. We can
calculate the final preference η̂t

i of a type A agent as follows:

η̂t
i =

(1 + Π) αt
A + (1− Π) αt

B

2
+ θ̃t

i (7)

The random variable θ̃i is a weighted average of the agent’s idiosyncratic com-
ponent and those of her neighbors. We can calculate the ‘average’ or median
preference for each type by summing over all individuals of the same type.9 If
society is sufficiently large, the idiosyncratic components cancels out by the law of
large numbers, and we obtain the group preferences Et

A:

Et
A =

(1 + Π) αt
A + (1− Π) αt

B

2
(8)

Analogously, we obtain an expression for the group preference of type B agents
after they update their initial preferences:

Et
B =

(1 + Π) αt
B + (1− Π) αt

A

2
(9)

The difference in median group preferences can be calculated as:

∆Et = Et
A − Et

B = Π
(
αt

A − αt
B

)
(10)

9This would be the opinion observed by a Gallup poll over a large sample of individuals.
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This formula illustrates how group separation can preserve initial group-specific
differences. The more separated agents are, the less they take the opinions of other
types into account which tends to increase the ‘median distance’ to the median
voter.

Differences in the preferences of group members can be further amplified by a
phenomenon known as group polarization documented in the experimental social
psychology literature (Brown (1986)). Agents tend to weigh the views of more
strongly opinionated peers more heavily than those of less opinionated ones when
forming their own preferences. Polarization appears to be particularly prevalent
if communication is computer-mediated (Hightower and Sayeed, 1995) as content
on the internet can be easily searched for websites and newsgroups which support
one’s opinion (Sunstein, 2001).

Finally, higher group separation also promotes the formation of group specific
institutions I such as political parties in the political context or specialized field
journals in academia. These institutions tend to amplify the private benefits agents
derive from communicating more with own-type agents.

To summarize, lower individual separation promotes welfare while an increase
in individual separation has ambiguous welfare consequences. On the one hand,
higher group differences decrease welfare by making coordination on public good
provision more difficult. On the other hand, group separation gives rise to institu-
tions complementing private gains.

4 The Effects of Lower Communication Costs on

Group and Individual Separation

In this section we analyze how a decrease in the cost of communication affects
group and individual separation respectively.

4.1 Group Separation

A decrease in communication costs will always increase group separation. Lower
communication costs make agents more selective in their choice of collaborators,
and allow them to collaborate on more projects with own-type agents. Formally,
we can derive the degree of group separation as follows:

Π (C) =
1

2
[1 + γ (C)] (11)

This expression is the weighted sum of the following terms: with probability
(1 − γ(C))2 half of the messages go to same type neighbors, with probability
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2γ(C)(1− γ(C)) three quarters of the messages go to same types and with prob-
ability γ(C)2 all messages go to same type neighbors. Note that group separation
Π (C) is decreasing in the cost of communication C, i.e. communication increas-
ingly focuses on own-type neighbors. In particular, we have Π (C) = 1

2
for C = ∞

and limC→0 Π (C) = 1.

4.2 Individual Separation

The effect of a decrease in the cost of communication from CH to CL < CH on
individual separation is a priori ambiguous. Agents will send more messages to
distant own-type neighbors which will tend to increase the speed of within-type
diffusion. This connectivity effect on its own would work to decrease the degree
of individual separation. However, higher within-type communication increases
group separation and makes it harder for messages to travel between types. In
particular, if communication costs become very small (CL → 0), news from a type
A agent will almost never reach type B agents. This would make the degree of
individual separation infinite. Therefore, the net effect of lower communication
costs on the degree of individual separation is ambiguous.

However, for large networks sizes n we can show that the first effect dominates
the group separation effect. The intuition is that connectivity is a global property
while group separation is a local one. As the size of agents’ neighborhoods increases
due to better communication technologies the number of time periods necessary
for news to travel the distance between two randomly drawn same-type agents
decreases proportionally. Nevertheless, the expected number of time periods to
bridge this distance will be of order n. In contrast, the waiting time for news to
travel between some agent and her close distinct-type neighbor is 1

F (U+C)
:10 news

will at some point ‘cross over’ the type barrier as they spread through the (large)
social network. Therefore, the presence of distinct types does not greatly affect
average individual separation.

The next theorem formalizes this first result: while group separation increases
due to lower communication costs individual separation always decreases for suffi-
ciently large societies. We normalize individual separation Ŝ by dividing through
by n to compare separation for different communication costs.

Theorem 1 Average individual separation Ŝ (C) satisfies

lim
n→∞

Ŝ (C)

n
=

1 + γ (C)

2
(
2 + 5γ (C) + γ (C)2) =

1

2
a (C) .

It is increasing in C.

10The probability of sending a message to this neighbor is F (U + C).
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Proof: see appendix A

An heuristic proof of theorem 1 proceeds as follows. Two random agents live
on average a distance n

2
apart (since the circle has length 2n). The cluster of

agents who heard about the news expands on both ends an expected distance of
∆d (C) = 1

a(C)
> 2 (1− γ (C)) + 4γ (C).11 Hence, it will take on average n

2
/∆d(C)

time periods for news to travel between two randomly selected agents.
Theorem 1 has the following immediate corollary.

Corollary 1 The relative degree a (CH , CL) of individual separation in a regime
with a high cost CH of communication versus a regime with a low cost CL < CH

of communication satisfies:

lim
n→∞

Ŝ (CH)

Ŝ (CL)
=

a (CH)

a (CL)
(12)

Theorem 1 and corollary 1 can be extended to more general lattice graphs. In
particular, if we look at circular graphs with a larger radius of interaction both
results will hold but the function a(C) will change. On two and more-dimensional
graphs we have to additionally normalize by the degree of individual separation by
nd where d is the dimension of the lattice.

Our results differ from van Alstyne and Brynjolfsson (1997) who focus on group
separation and argue that their measures of group and individual separation co-
move. However, they derive this conclusion from simulations on small networks
where lowering communication costs has an ambiguous effect on individual sepa-
ration.

5 Small-World Networks

Recently, various researchers have observed that real-world social networks exhibit
small-world features (see, for example, Watts and Strogatz (1998)). Small-world
networks are characterized by (a) a high degree of clustering and (b) small charac-
teristic path length. The coefficient of clustering C (G) of some graph G measures
the degree to which neighboring agents’ individual neighborhoods overlap, and
therefore captures the degree of ‘cliquishness’ of the network.12 Regular lattice
graphs such as our circle are the prototypes of highly clustered networks.

11The outermost agent on the right boundary of a cluster can expand the cluster by a length 2
or 4. However, if the agent to the direct left of him send a message to a distant agent the cluster
expands by a length of 3.

12Formally, assume each agent has m neighbors and starts p projects in each time period (in
our model we have m = 8 and p = m/2 = 4). She starts a project with some neighbor j
with probability xij in each time period. Agents i and j conduct an expected number Yij ≤
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The characteristic path length L (G) of a graph G measures the average ‘length’
of the shortest chain connecting two random agents. The length of a chain is de-
fined as the time it takes to transmit a message along the chain.13 The average
path length is closely related to our measure of individual separation.14 In partic-
ular, as we increase the size n of a circle graph both individual separation and the
average path length increase at rate n.

5.1 A Simple Small-World Network

We adapt a model of small-worlds developed by Watts and Strogatz (1998): the
‘skeletal’ network of our small world is the same circular network we introduced
in section 2. However, we allow for additional shortcuts between agents on the
circle. Each type A (type B) agent on the circle has a random link with some
other own-type agent in the network.15 For simplicity, we assume that each agent
has precisely one of those ‘weak’ links.

We call a shortcut between two agents i and j a weak link because their in-
dividual neighborhoods do not overlap. On the other hand, agents have strong
links to neighbors on the circle because they share many common neighbors. This
distinction between weak and strong links was first made by Granovetter (1973)
and Granovetter (1995) in his analysis of job search.

As in Granovetter (1973) agents communicate more frequently along weak links
than strong links: in each period there is a small probability δ that the agent can
conduct one additional project. This project can only be conducted (a) either with
one of the two direct neighbors to the right or left which yields utility U and involves
costless communication; or (b) with the weak-link neighbor which yields random

min (p− xij , m̃) of projects with the same set of agents in each time period where m̃ ≤ m− 1 is
the number of common neighbors of both agents which can be at most m−1. Then the coefficient
of clustering C (G) is defined as the weighted average of the share of messages neighboring agents
send to the same destinations:

C (G) =
1

n (m− 1)

∑

i,j 6=i

xij
Yij

p− xij
(13)

The coefficient of clustering always lies between 0 and 1. It tends to zero for large random graphs
and is 1 for complete graphs (where all agents communicate equally with each other).

13Formally, consider the chain of agents C = (A0, A1, .., Am, Am+1, .., Am) that connects agents
i and j (i.e. A0 = i and Am = j) and denote the volume of messages that are sent between
agents Am and Am+1 with xm. The length of the chain is then defined as LC =

∑m−1
m=0

1
xm

.
14However, it is not the same. When constructing our measure Ŝ we allowed agents to continue

sending messages even after they have heard about news in order to model the spread of news
through society. Each agent j can therefore be reached by agent i through more than one path.
Hence agent j will not always find out about the news through the shortest possible path.

15Our results do not depend on agents having links only to own-type agents. In fact, they stay
unchanged for any kind of type-correlation along weak links.
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utility Û distributed according to the distribution function F over [U,∞).16 In
the latter case the cost of communication is assumed to be Ĉ. Therefore, the
probability of conducting this additional project with the weak-link neighbor is

1− F
(
U + C̃

)
=

1

A
(
C̃

) (14)

Note that the function A
(
C̃

)
is the inverse probability of conducting the additional

project with the weak-link neighbor and is hence increasing. While the previously
defined function a (C) captures the rate of expansion of news along ‘strong’ links,

the new function A
(
C̃

)
describes the rate of expansion of news along ‘weak’ links.

An improvement in communication and transportation technology weakly de-
creases both the short-range communication cost C and our new long-range com-
munication cost C̃. However, they can improve at different rates: early telephony
and automobiles decreased short-range communication costs but had little effect
on the long-range cost. Vice versa, modern advances in electronic communication
decreased the long-range cost at a faster rate than the short-range cost.

Our definitions for group separation ΠS and individual separation ŜS carry over
to small-world networks with one caveat. Our definition of a small-world network
does not define a unique network but a probability distribution over a class of
small networks because the identity of the weak-link neighbor is chosen randomly.
With a probability that is exponentially declining in the network size n some of
these networks look just like lattice networks.17 To focus attention on ‘typical’
small-world networks we calculate the expected time Sj for news to travel from
agent 1 to agent j by taking the expectation over all possible small-world networks.

5.2 Group and Individual Separation in Small Worlds

Unsurprisingly, the presence of weak links does not greatly affect group separation.

In fact, the degree of group separation ΠS
(
C, C̃

)
of the small world model is

simply a linear transformation of the degree of group separation Π (C) of the
original model:

ΠS
(
C, C̃

)
=

Π (C) + 1

A(C̃)
δ
4

1 + δ
4

(15)

16Collaboration with distant weak-link neighbors seems contrived. A more natural extension of
the model would have agents choose collaborators amongst their three distant own-type neighbors
and their two close distinct-type neighbors. However, the advantage of extending the model as
suggested here is that it is easier to compare the new model with the original set-up.

17For example, in one realization each agent has a random link to his right own-type neighbor.
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Therefore, group separation increases as communication costs decrease just as it
did in the original model.

The effects of weak links on individual separation are dramatic. Weak links
provide shortcuts through which distant parts of the circle graph can get ‘infected’
by news. Therefore, the individual degree of separation no longer increases linearly
in the size n of the circle but only at the rate ln (n) as the next theorem shows. It
is in this sense that weak links make the world ‘small’.

Theorem 2 In the small world average individual separation satisfies

lim
n→∞

ŜS (C)

ln (n)
=

√√√√a (C) A
(
C̃

)

2δ + o (δ)
.

Proof: see appendix B

In fact, when we compare the relative degree of separation in the high and low
cost regime we find that our insights from the basic model continue to hold. Inter-
estingly, improvements in short-range and long-range communication technologies
affect the rate of diffusion in exactly the same way.

Corollary 2 The relative degree of individual separation in a regime with a high

cost
(
CH , C̃H

)
of communication versus a regime with a low cost

(
CL, C̃L

)
≤(

CH , C̃H

)
satisfies:

lim
δ→0

lim
n→∞

ŜS
(
CH , C̃H

)

ŜS
(
CL, C̃L

) =

√√√√√
a (CH) A

(
C̃H

)

a (CL) A
(
C̃L

) (16)

Note that in small worlds a doubling of the local rate of diffusion a (C) decreases
the individual degree of separation only by a factor

√
2 instead of a factor 2 as in

the basic model.
An interesting special case are homogenous improvements in communication

technologies which increase the rate of short-range and long-range diffusion (i.e.
the parameters a (C) and A (C) by the same factor f . In this case, the degree of
individual separation will also decrease by the same factor f .

Our small-world results easily generalize to circular graphs with larger individ-
ual neighborhoods. If we consider different skeletal networks (i.e., a square lattice
rather than a circle) our proofs can be adapted to derive precise results on a case
by case basis. However, qualitatively, the results remain the same: lower commu-
nication costs decrease individual separation in both small worlds and on lattice
graphs, but the relative decrease is less pronounced for small worlds.
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6 Collaboration of Academic Economists between

1969 and 1999

We test our model by looking at the evolution of academic coauthoring between
1969 and 1999. Several new technologies decreased the cost of communication
substantially starting around 1980. First, fax technology became ubiquitous in the
1980s: by 1985 already more than 100,000 machines were shipped annually and
by 1990 this number had increased 20 fold (Economides and Himmelberg, 1995).
Second, emailing and file transfer through FTP was common by the beginning of
the 1990s at US universities (Arfman and Roden, 1992; Walsh, 1997).18 Third
and perhaps most importantly, the rise of of the Internet in the 1990s made it
dramatically easier to publish and search for working papers using the HTML
markup language and browser software. Moreover, deregulation of the US airline
and telephone industries in the 1980s drastically decreased the cost of travelling
and making long distance telephone calls. The calling rates for state to state calls,
for example, fell almost by half between 1984 and 1989 during the price wars which
followed the break-up of AT&T in 1984 (FCC, 1999).

The period 1980-1999 therefore provides a natural testing ground for our theory.
We would also expect the effects of decreasing communication costs on group and
individual separation to be particularly strong within the academic community.
Research departments were early adopters of fax machines and academics were
the first users of both email and the Internet because the original Arpanet was
specifically designed as a research tool.

Our model predicts that decreasing communication costs should lead to more
collaboration between ‘similar’ researchers but at the same time decrease individ-
ual separation of all researchers. Increased group separation can have undesirable
welfare consequences: if subfields develop divergent methodologies such as ‘natu-
ral experimentalists’ versus ‘empirical labor economists’ it can complicate resource
allocation procedures and affect teaching of the discipline. On the other hand, we
would expect lower individual separation to be unambiguously positive because it
accelerates the transmission of useful and yet unpublished word-of-mouth infor-
mation such as the availability of new data sources or preliminary results of other
researchers.19

We use a dataset which contains all articles published between 1969 and 1999
in eight top economics journals.20 We measure collaboration and communication

18In the US 24 percent of physicists and 34 percent of mathematicians had email addresses in
1991 (Walsh, 1997).

19Such word-of-mouth transmission is particularly important in economics where publication
of new results typically takes 2 years and more.

20Glenn Ellison generously shared his data with us. The data has been collected from the CD
version of EconLit.
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between researchers by looking at their coauthored publications. Our dataset
contains 8,838 authors of whom 6,201 authors published at least one coauthored
paper.

6.1 Changes in Group Separation

In order to measure changes in group separation over time we first have to define
metrics for measuring geographic distance between coauthors and for measuring
the similarity of their types which can be easily mapped into our model.

We measure the type similarity of coauthors by the field overlap of their pub-
lication records prior to publication of their coauthored article. The distance be-
tween coauthors is coded in two different ways. First of all, we simply distinguish
between coauthor relationships where both coauthors are affiliated with US in-
stitutions (US/US coauthors) and US/foreign collaborators. Second, we restrict
attention to US/US coauthors and distinguish between coauthors who work less
than 200 kilometers (125 miles) apart and those who live further apart. Although
the precise cutoff distance is somewhat arbitrary we had several reasons to choose
200 kilometers. First of all, it is close to the median distance between US coau-
thors. Second, it implies a total commute time by car of about 4-5 hours for one
coauthor to visit her collaborator. We consider this close to the maximum distance
which would allow regular face-to-face contact between two collaborators without
having to travel for more than one day or use an airplane.

We test our predictions on group separation by embedding our model into
a simple discrete choice framework. There is a stream of potential projects yi

with characteristics (Di, Si, Xi) where Di and Si are dummy variables which are
set to 1 if both coauthors are distant and similar respectively. The vector Xi

captures other attributes of the potential project such as the field of study and
other coauthor attributes such as their degree of specialization and the number of
previously published papers. The probability that a potential project yi will be
realized is

Prob(yi = 1|Di, Si, Xi) = g(αDDi + αSSi + βXi) (17)

where g is an increasing function. With probability 1 − g(Di, Si, Xi) the project
will not be realized. We estimate the empirical model separately for the periods
1980-1989 and 1990-1998 and make the following predictions:

H1: Improved means of communication decrease the cost of coauthoring with a
distant author such that

α90
D > α80

D . (18)

H2: The opportunity cost of coauthoring with a distinct type coauthor increases
because it becomes more profitable to wait for a project with an own-type
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coauthor. Agents become more selective which implies that

α90
S > α80

S . (19)

6.1.1 Description of the Data

We extract all coauthored papers between 1980 and 1999. To simplify our analysis
we use just the first two coauthors of each paper - more than 80 percent of all
coauthored papers during this period have exactly two coauthors. We only include
papers where at least one coauthor is affiliated with a US research institute and
where each coauthor has at least one prior publication during the preceding 10
years.21 The latter restriction is necessary because we use an author’s publication
record to determine her type and to measure the degree of type similarity be-
tween two coauthors. The resulting subsample contains 1,772 coauthored articles.
Summary statistics are provided in table 1.

We only observe publication dates rather than the dates on which collaboration
between two coauthors started. This introduces a potentially troublesome source
of measurement error into our analysis especially since mean submit-accept times
increased in four out of the five top economics journals from less than 12 months
in the early 1970s to 18-30 months in the 1990s (Ellison, 2001). However, our
analysis focuses on comparing decades rather than particular years. Therefore,
any measurement error will only misclassify articles at the beginning and the end
of each of the two decades22.

We measure type similarity of coauthors by the degree of overlap of their pub-
lication records. Thus we do not define an author’s type directly but only relative
to her coauthor: they are of more similar type if their publication records overlap
to a greater degree. Formally, for each paper i and author j we construct a vector
vij (c) of size 17 which summarizes the share of publications in field c. We then
define our basic type similarity measure AUSIMIL as follows:

AUSIMIL =
17∑

c=1

min (vi1 (c) , vi2 (c)) (20)

This index also takes values between 0 and 1: larger values indicate greater simi-
larity. A value of 1 implies that both authors allocated their research time equally

21Econlit provides affiliation only after 1988. For 1969-1988 affiliations were manually added
to the data set by searching through paper copies of the eight journals in our sample.

22Another potential source of measurement error arises if a coauthor changes his affiliation
between the start of the project and the publication date. Since we do not have good data on
working papers we are not able to observe whether the projects were started while co-authors
were at the same institution and then published when they had distinct affiliations or the other
way.
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across the same fields. Note that AUSIMIL always takes the value 0 if both authors
work in distinct fields. To map the data more closely into our model we construct
a discrete measure of type similarity. Two authors are similar (S = 1) if AUSIMIL
is above its median value and dissimilar (S = 0) otherwise.

NATDIFF is an indicator variable which is 1 if one of the coauthors is foreign.
DISTANCE measures the geographic distance between academic institutions of
both coauthors in kilometers for US/US coauthors. LONGDIST is an indicator
variable equal to 1 iff the distance between two US-based coauthors is more than
200 kilometers.

We collect information about the 10 year prior publication record of each coau-
thor j by counting her total number of publications AUPREVj (j = 1, 2) and
her degree of specialization AUSPECj. We use a simple Herfindahl-type index of
specialization defined as follows:

AUSPECj =
17∑

c=1

vij (c)2 (21)

This index of specialization is a real number between 0 and 1 and takes the value
1 if the author is completely specialized, i.e. all her publications are in a single
field.

6.1.2 Analysis

The patterns of coauthoring with foreign authors (NATDIFF) and coauthoring
with long-distance US authors (LONGDIST) are consistent with hypothesis H1.
Between 1969 and 1979 and 1980 to 1989 the share of US/foreign papers was about
16 percent and increased to 19 percent thereafter. Amongst US/US coauthor
relationships long-distance collaborations increased from 43 percent before 1980 to
50 percent between 1980 and 1989 and 55 percent thereafter. These results are
consistent with those found in Gasper and Glaeser (1998).

When we regress both distance measures on a year trend and 16 field con-
trols an interesting trend emerges: US/foreign coauthoring increased mainly in
the 1990s while US/US long-distance coauthoring already accelerated in the 1980s.
US/foreign coauthoring increased at an annualized rate of 1.4 percent in the 1990s
after decreasing slightly in the 1980s (see table 2). In contrast, long-distance col-
laborations within the US increased at an annualized rate of 1.4 percent in the
1980s (see table 3). This is consistent with the fact that the US deregulated their
airline and telecommunications markets earlier than most other countries and was
also a leader in introducing electronic means of communication.

In figure 2 we decompose the changes in the patterns of coauthoring between
the 1980s and the 1990s. Two related trends emerge from ‘eye-balling’ the US data:
(1) coauthoring between distinct-type and close coauthors has declined strongly;
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while (2) coauthoring with distant own-type collaborators has increased by roughly
the same amount. These trends also show up in the US/foreign coauthoring data
but less strongly so. Both phenomena are exactly consistent with the predictions of
our model: agents become more selective when communication costs decrease and
substitute low-value projects with close but dissimilar coauthors with high-value
projects with distant but similar collaborators.

Ideally, we would like to formally test our joint hypothesis H1 and H2 by sepa-
rately estimating the probability pi that a potential project yi with characteristics
(Di, Si, Xi) is implemented in the 1980s and 1990s. Unfortunately, we lack the
data to fully estimate such a discrete model because we only observe successful
projects (yi = 1). However, under some additional assumptions we can estimate
the change in coefficients between the periods 1980-1989 and 1990-1998.

We choose the following functional form for estimating our discrete choice
model:

Prob(yi = 1|Di, Si, Xi) = exp(αDDi + αSSi + βXi) (22)

Note that we can interpret αD (and similarly αS) as the relative percentage increase
in probability that a potential project will be realized if both coauthors are distant
(or of similar type). Using Bayes’ rule we obtain:

p(yi = 1|Di, Si, Xi) = p(Di, Si, Xi|yi = 1)
p(yi = 1)

p(Di, Si, Xi)
(23)

The additional project characteristics Xi include field controls and dummy vari-
ables capturing the degree of specialization of each coauthor and the experience of
each coauthor measured by the number of articles which he or she has published
previously. The cutoff values for our two specialization dummies (one for each
coauthor) and our two experience dummies are simply the median values of AUS-
PEC1, AUSPEC2, AUPREV1 and AUPREV2. The joint project characteristics
(Di, Si, Xi) therefore divide the dataset into discrete cells. To simplify notation we
will use the subindex i both to denote an individual observation and a cell with
characteristics (Di, Si, Xi).

In order to ferret out the effect of distance on coauthoring we can simply
compare two cells with the same characteristics except distance:

p(yi = 1|Di = 1, Si, Xi)

p(yi = 1|Di = 0, Si, Xi)
=

p(Di = 1, Si, Xi|yi = 1)

p(Di = 0, Si, Xi|yi = 1)︸ ︷︷ ︸
TermI

p(Di = 0, Si, Xi)

p(Di = 1, Si, Xi)︸ ︷︷ ︸
TermII

(24)

Using our functional form assumption the left hand side of this equation simplifies
to exp(αD). Term I on the right-hand side can be easily estimated from the
data. Only term II presents a problem because we do not know the distribution of
coauthor characteristics in the universe of potential (as opposed to actual) projects.
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However, if we assume that this distribution did not change between the periods
1980-1989 and 1990-1998 then we can obtain a formula for the change in the
distance coefficient αD when estimated separately for both periods:

∆α = α90
D−α80

D = ln

(
p90(Di = 1, Si, Xi|yi = 1)

p90(Di = 0, Si, Xi|yi = 1)

)
−ln

(
p80(Di = 1, Si, Xi|yi = 1)

p80(Di = 0, Si, Xi|yi = 1)

)

(25)
For each pair of cells with characteristics (Di = 1, Si, Xi) and (Di = 0, Si, Xi) we

thus get a different estimate ∆̂α(Si,Xi) with precision h(Si,Xi).
23 By summing over

all cell pairs we can thus get an improved estimate of ∆̂αD and its standard error
σ2:

∆̂αD =

∑
(Si,Xi)

h(Si,Xi)∆̂αD(Si,Xi)∑
(Si,Xi)

h(Si,Xi)

σ2 =
1∑

(Si,Xi)
h(Si,Xi)

(27)

We derive an estimator for the change ∆̂αS in the preference for coauthoring with
a similar author in an exactly analogous way.

The assumption that the distribution of coauthor characteristics for the uni-
verse of potential projects did not change between 1980-1989 and 1990-1998 is
important for the derivation of this estimator. It implies that the geographic dis-
tribution of economists across US universities according to fields and degree of
specialization has not changed very much during the last 20 years. We do not have
data to verify this assumption: but to the extent that economics departments
tend to replicate themselves when replacing vacant positions with new researchers
in order to preserve the balance of the various subfields within the department we
believe that the assumption can be justified.

Table 4 reports our estimates for ∆̂αD and ∆̂αS using the data on US/foreign
coauthoring and table 5 repeats the exercise for US/US coauthoring data. In each
table we estimate four different specifications. In the first column we characterize

23For each (Si, Xi) the estimate ∆̂α(Si,Xi) and precision h(Si,Xi) are calculated as follows.
From the data we can estimate for each pj(Di, Si, Xi) (j = 80, 90) the sample mean p̂j

(Di,Si,Xi)

and variance σ2,j
(Di,Si,Xi)

. We then obtain:

∆̂α(Si,Xi) = ln

(
p̂90
(Di=1,Si,Xi)

p̂90
(Di=0,Si,Xi)

)
− ln

(
p̂80
(Di=1,Si,Xi)

p̂80
(Di=0,Si,Xi)

)
(26)

1
h(Si,Xi)

=
σ2,90

(Di=1,Si,Xi)(
p̂90
(Di=1,Si,Xi)

)2 +
σ2,90

(Di=0,Si,Xi)(
p̂90
(Di=0,Si,Xi)

)2 +
σ2,80

(Di=1,Si,Xi)(
p̂80
(Di=1,Si,Xi)

)2 +
σ2,80

(Di=0,Si,Xi)(
p̂80
(Di=0,Si,Xi)

)2
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cells only by the similarity dummy Si and the distance dummy Di which gives us
four distinct cells. In the second column of both tables we add controls for 17 fields
giving us 4×17 = 68 cells. In the third column we also control for each coauthor’s
degree of specialization giving us 4 × 68 = 272 cells and in the fourth column
we control for each coauthor’s experience. Increasing the number of controls any
further is problematic given our sample size: while each new control dummy allows
us to better control for project heterogeneity it also doubles the number of cell pairs
and cuts the observations per cell on average by a half. Eventually, an increasing
number of cells contain no observations.

For our US/US coauthoring data our estimates of both ∆αD and ∆αS are
positive and significant which confirms hypothesis H1 and H2. The effects are
quite large: in the 1990s a potential project with a distant author is 30 percent
more likely to be realized than in the 1980s. The increased choice set makes
researchers about 20 percent less likely to realize a project with a dissimilar author
compared to the 1980s. The estimated coefficients are remarkably stable across all
four specifications.

For US/foreign coauthoring we estimate a slightly bigger increased preference
for coauthoring with own-type coauthors compared to the estimated coefficients
for US/US data in table 4. However, we do not obtain estimates of ∆αD which are
significantly different from zero. Unfortunately, the share of US/foreign coauthored
papers only lies around 17 percent from 1980-1998. This makes it hard to apply our
estimation technique while at the same time controlling for sources of heterogeneity
such as fields and experience.

6.2 Changes in Individual Separation

To demonstrate changes in individual separation we simply calculate the average
number of coauthors who separate two randomly chosen researchers i and j. We
calculate this distance using 1989 and 1999 as base years and by considering all
papers published during a twenty- or fifteen-year time frame prior to those base
years. We say that two researchers are linked if they have coauthored a paper
during the respective twenty or fifteen years time frame.

We then compare the network distance between two random researchers in the
1969-1989 network with the same measure in the 1979-1999 network. We repeat the
same exercise with a comparison based on fifteen-year time frames (i.e. 1974-1989
compared to 1984-1999).

One problem with this simple approach is that the resulting graphs are not
always connected (and our measure of individual separation is hence not well de-
fined): some researchers never coauthor or coauthor with an exclusive clique of
colleagues. Fortunately, almost all researchers belong to the same giant connected
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cluster.24 For example, the coauthoring graph of all economists who have published
at least one paper between 1969 and 1999 consists of a giant component with 3,443
distinct authors, while the next largest component of the graph only contains 15
authors. The same giant component exists within all the subgraphs defined for the
pre-1989 and pre-1999 networks. To keeps our analysis simple we ignore the small
number of author-nodes who do not belong to the giant component.

Another complication arises due to the fact that coauthoring has become in-
creasingly common. Between 1969 and 1989 every author in the giant cluster
coauthored on average C1 = 2.54 papers. Between 1979 and 1999 that number
increased to about C2 = 2.73 papers, an increase of about 7.5 percent. In recent
work, Goyal, van der Leijy, and Moraga-González (2004) argue that this effect can
explain most of the observed decline in individual separation.

We want to abstract away from this increase in the density of the network when
comparing average individual separation. We achieve this by deleting links in the
pre-1999 coauthoring network with probability 1 − C1

C2
. This ‘pruning’ of links

preserves the structure of the network in terms of the share of ‘close’ and ‘distant’
links and makes the pre-1989 networks comparable to the pre-1999 networks.

The left two columns of table 6 show the evolution of average individual sepa-
ration over time for twenty- and fifteen-year time frames. In both cases individual
separation decreases by 7 and 16 percent respectively between 1989 and 1999.
These declines are amplified if we restrict attention to authors with more than 2
publications (see right two columns in table 6). Such a restriction excludes many
‘peripheral authors’ who have only weak connections to the giant cluster and tend
to drive up the degree of separation.25 Now average individual separation decreases
by 16 and 18.5 percent respectively.

7 Conclusion

Our model shows how advances in communication technology have the potential
to simultaneously bring us together and push us apart. We test this hypothesis by
looking at collaboration patterns between academic economists and find support
for both lower average individual separation and greater group separation.

There are a number of possible directions for extending our empirical analysis.
First of all, it would be interesting to see whether our dual observations of lower
individual separation and greater group separation can be replicated for other
datasets. Second, the link between different measures of separation and economic

24The presence of a giant connected cluster is typical for real world social networks. Watts and
Strogatz (1998) analyze the network of film actors who are linked if they acted in a film together
and find that about 90 percent of all actors belong to the giant connected cluster.

25This might also help to reconcile our results with those of Goyal, van der Leijy, and Moraga-
González (2004).
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outcomes should be explored carefully. This would mean, for example, to carefully
map a process of technological diffusion through different types of social networks.
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A Proof of Theorem 1

We start by introducing some notation. We denote the cluster of agents who ‘hear
about’ news sent by some agent i by time t with H t

i . We adopt the convention
H0

i = {i}. Since a cluster has two boundaries on a circular graph we focus on the
expansion of the right boundary without loss of generality.

The leading agent h
t

i is the member of the set H t
i who is farthest away from i

on the right. We define the distance between agents i and h
t

i as dt
i:

dt
i =

∣∣∣ht

i − i
∣∣∣ (28)

The expansion of the right boundary of the cluster is determined by the leading
agent and the agent next to him if she has heard the news already. Therefore, the
right boundary can be in one of two states: in state 01 the agent next to the
leading agent has not heard about the news. In state 11 the agent next to the
leading agent has heard about it too. From state 01 the process transits to state
11 with probability 1 − γ (C) (if the leading agent collaborates with his close
neighbors only). From state 11 the process transits to state 01 with probability
(1− γ (C)) γ (C) (if the leading agent collaborates with his two own-type neighbors
and the agent next to him only collaborates with his close neighbors). Since the
probability flow between both states has to be the same in steady state we can
deduce that the probability that the right boundary of the cluster is in state 01
converges to γ

1+γ
.

In state 01 the leading agent sends a message with probability 1− γ (C) to her
two close neighbors and with probability γ (C) to her two own-type neighbors (one
close and one distant). We can therefore describe the evolution of dt

i through the
following transition matrix:

Prob
(
dt+1

i |dt
i; 01

)
=





1− γ (C) if dt+1
i = dt

i + 2
γ (C) if dt+1

i = dt
i + 4

0 otherwise
(29)

In state 11 both the leading agent and the agent next to her can send messages
with probability 1− γ (C) to their two close neighbors and with probability γ (C)
to their two own-type neighbors. The boundary of the cluster can therefore expand
by either a distance of 2, 3 or 4. The transition matrix becomes:

Prob
(
dt+1

i |dt
i; 11

)
=





(1− γ (C))2 if dt+1
i = dt

i + 2
γ (C) (1− γ (C)) if dt+1

i = dt
i + 3

γ (C) if dt+1
i = dt

i + 4
0 otherwise

(30)
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We can then calculate that the time-averaged spread of news converges in proba-
bility to

∆d = plimt→∞
dt+1

i − dt
i

t
= 1 + γ (C) +

1 + 3γ (C)

1 + γ (C)
=

1

a(C)
(31)

which is decreasing in C.
Two random agents i and j are on average a distance of n

2
apart (since the

circle has length 2n). Reaching j or a direct neighbor of j will therefore take on
average n

2∆d
time periods. Reaching j will then take at most 1

F (U+C)
time periods.

QED

B Proof of Theorem 2

The proof proceeds in two steps.

1. We show that the expected waiting time Wβ for news to spread to at least a
share β of the population of agents satisfies:

lim
n→∞

Wβ

ln (n)
=

1√
2δ

a(C)A(C̃)
+ o (δ) + O (β)

(32)

2. We show that the average time it takes for news to spread from the share
β of infected agents to the remaining 1 − β non-infected agents is bounded
above by a constant which is independent of n.

From these two steps we can deduce

lim
n→∞

ŜS

ln (n)
=

1√
2δ

a(C)A(C̃)
+ o (δ) + O (β)

(33)

Since we can choose β as small as we desire we immediately obtain the result stated
in the theorem.

B.1 Step I

News spreads through two channels: (a) existing clusters of infected agents expand
around their boundaries, and (b) new clusters form thanks to weak links. We start
by analyzing a simplified stochastic process which provides an upper bound for the
diffusion of news and hence a lower bound on the waiting Wβ until a share β of
agents have heard about the news. The simplifying assumptions are:
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1. Each agent within the convex hull of an infected cluster can start a new
cluster with probability δ

A(C̃)
through his weak link in each period.

2. Clusters evolve without overlap.

Both assumptions speed up diffusion. To derive the rate of diffusion of this simpler
process we introduce some notation. At each point in time t the process generates
a new (stochastic) set of clusters Ξt. The superset of all these clusters is denoted
with Πt =

⋃
s≤t Ξt. Each cluster ξ ∈ Ξτ is said to have a vintage τ . It grows

over time at a stochastic rate and we call the size of its convex hull at time t the
span D (ξ, t). We use the convention D (ξ, t) = 0 if t < τ . The number of clusters
formed at time t is denoted with Xt = |Ξt| and the total number of agents inside
the span on all clusters which have formed up to time t is Yt. Note that for the
coupled process we have:

Yt =
∑

ξ∈Πt

D(ξ, t) (34)

The number of infected agents Yt increases over time because there are new
infections and because existing clusters expand:

Yt+1 − Yt = Xt+1 +
∑

ξ∈Πt

[D (ξ, t + 1)−D (ξ, t)] (35)

We take expectations on both sides and define yt = E[Yt], xt = E[Xt] and zt =
E|Πt|. We also know from the proof of theorem 1:

lim
t→∞

E
[∑

ξ∈Πt
[D (ξ, t + 1)−D (ξ, t)]

]

zt

= 2
1

a(C)
(36)

Therefore we can simplify equation 35 and obtain

yt+1 − yt = xt+1 +
2

a(C)
u(t)zt (37)

where |u(t)− 1| ≤ A exp(− ε
δ
) for some A, ε > 0. We next note that

xt+1 =
δ

A(C̃)
yt (38)

We then get:

yt+1 − yt =
δ

A(C̃)
yt +

2

a(C)
u(t)zt (39)

Next we note that:

zt+1 − zt = xt+1 =
δ

A(C̃)
yt (40)
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We next take first differences of equation 39:

yt+2− yt+1− (yt+1− yt) =
δ

A(C̃)
yt+1 +

2

a(C)
u(t + 1)zt+1−

[
δ

A(C̃)
yt +

2

a(C)
u(t)zt

]

(41)
We assume that u(t) = 1 at first. We then have a simple difference equation of
the following form:

yt+2 − 2yt+1 + yt =
δ

A(C̃)
(yt+1 − yt) +

2δ

a(C)A(C̃)
yt (42)

When we solve the characteristic equation we get a solution of the form:

yt = B exp

(√
2δ

a(C)A(C̃)
t + o(

√
δ)

)
(43)

It can be shown that u(t) is sufficiently close to 1 for small enough δ that it does
not affect this solution to the difference equation. From this solution equation 32
follows.

Next, we have to relax the simplifying assumptions we made for the coupled
process.

• Agents can start a new cluster through their weak link only once. Agents
start new clusters at rate δ and become unavailable for starting a second
cluster. However, we have just shown that the population of infected agents
expands at a rate proportional to

√
δ. Hence, we get again a solution as in

equation 43.

• Not every agents inside the convex hull is infected. Whenever an agent at
the boundary communicates with a distant agent a ‘gap’ is created which
fills up with probability F (U + C) in each time period. For each τ the ratio
yt−τ

yt
→ 1 as δ → 0: an arbitrarily large share of infected agents live in clusters

of vintage τ for small δ. By choosing τ large enough we can ensure that the
share of infected agents inside the convex hull of these clusters converges to
1. Hence we get again solution 43.

• An agent’s weak link can become infected before the agent can infect that link
herself. At this point we use the fact that we only model the evolution of the
system until a share β of agents has become infected. That implies that an
agent can infect another agent through her weak link at least with probability
(1− β) δ

A(C̃)
which gives us formula 32.

• Clusters can overlap. To deal with this contingency we use again the fact
that the share of infected agents is at most β. Assume the yt infected would
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be randomly distributed along the circle - in this case the average distance
between them would be at least 1

β
. But since clusters grow around the bound-

aries the average distance between the boundaries of the zt clusters is also at
least 1

β
. Two neighboring clusters can grow together if their boundaries are

less than eight agents apart. The probability for this event is O(β). Hence a
share O(β) of non-overlapping clusters disappear in each time period which
gives us again formula 32.

B.2 Step II

For the second step we create a coupled process which governs the evolution of
the system after a share β of agents has become infected. We bias the evolution
of this process against the spread of the news - therefore the process provides a
lower bound on the true process. Note that after a share β of agents has become
infected a share η = β (1−O (δ)) of agents can spread news through their weak
links (see step I). We call this set of agents I and the set of agents they are linked
to NI . The following rules govern the coupled process:

1. Weak links generating from agents outside of the set I cannot spread news.

2. Each agent only sends news to her direct neighbor to the right if she collab-
orates with her and this agent does not belong to the set NI .

The agents in the set NI are on average a distance 1
η

apart and subdivide the
circle into fragments on which the coupled process develops independently. The
expected waiting time to cover each fragment is bounded above by 1

δ
+ 1

η
1

F (U+C)
.

By the law of large numbers the average time W ′ it takes for news to reach all
agents on the circle in the coupled process is the same, and hence finite. But since
the coupled process systematically discriminates against the spreading of news the
average time for news to infect all agents is also finite. QED
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Figure 1: Society with n = 5 type A and 5 type B agents.
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Table 1: Variable means and standard deviations for coauthored papers in eight
economic journals 1980-1998

Variable Mean Std. Dev. Variable Mean Std. Dev.
MTHEORY 0.197 0.398

Project Characteristics IO 0.145 0.352
FINANCE 0.071 0.257

AUSIMIL 0.452 0.317 MACRO 0.188 0.391
INTERNAT 0.058 0.234

DISTANCE 1068.261 1510.552 DEVELOP 0.012 0.111
NATDIFF 0.169 0.375 URBAN 0.009 0.095
LONGDIST 0.544 0.498 HISTORY 0.004 0.063
YEAR 1989.196 5.123 PF 0.07 0.255

LABOR 0.116 0.321
Coauthor Characteristics METRICS 0.055 0.228

PRODUC 0.017 0.131
AUPREV1 6.812 7.217 ENVIRON 0.005 0.071
AUPREV2 7.218 9.502 POLITECO 0.011 0.106
AUSPEC1 0.613 0.286 LAWECON 0.008 0.092
AUSPEC2 0.617 0.287 OTHER 0.016 0.127

Fields

EXP 0.015 0.123

N = 1772

The dataset comprises all coauthored papers in eight economics journals between 1980 and 1998 with
at least one US author: Journal of Political Economy, American Economic Review, Quarterly Journal
of Economics, Econometrica, Review of Economic Studies, Review of Economics and Statistics, Rand
Journal of Economics, Brookings Papers on Economic Activity. The variable AUSIMIL measures the
similarity of coauthors based on their publication records up to 10 years prior to publication of their
joint paper. AUSIMIL50 is an indicator variable and set to 1 if AUSIMIL is greater than its median
value. AUSPEC indicates how specialized authors are. NATDIFF is an indicator variable which is 1
if one of the coauthors lives outside the US. DISTANCE is distance between US coauthors locations in
kilometers and LONGDIST is 1 if the distance exceeds 200 kilometers (125 miles). YEAR indicates the
year of publication and calendar year 1980 is set to 0. Each paper falls into one of 17 field categories,
which are labor, econometrics, productivity, experimental, micro theory, industrial organization, finance,
macro, international, development, history, public finance, environmental economics, political economy,
law and economics, and other fields.

35



Table 2: Testing for trends in coauthoring between US and foreign economists by
regressing NATDIFF on YEAR and field controls

Variable (80-98) (80-89) (90-98)

YEAR 0.002 -0.008† 0.014∗

(0.002) (0.005) (0.006)

Field controls Yes Yes Yes

N 1772 857 792
R2 0.042 0.045 0.063

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

The dependent variable is NATDIFF; standard errors are shown in parentheses. The field
controls include experimental economics, micro theory, industrial organization, finance,
macro, international, development, urban economics, history, public finance, labor eco-
nomics, econometrics, productivity, environmental economics, political economy, and law
and economics. The first column includes all coauthored papers published between 1980
and 1998 while the next two columns restrict attention to the 1980s (1980-1989) and 1990s
(1990-1998).
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Table 3: Testing for trends in coauthoring between North American economists
by regressing LONGDIST on YEAR and field controls

Variable (80-98) (80-89) (90-98)

YEAR 0.009∗∗ 0.013† 0.003
(0.003) (0.007) (0.009)

Field controls Yes Yes Yes

N 1415 697 622
R2 0.015 0.027 0.017

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

The dependent variable is LONGDIST; standard errors are shown in parentheses. The
field controls include experimental economics, micro theory, industrial organization, fi-
nance, macro, international, development, urban economics, history, public finance, labor
economics, econometrics, productivity, environmental economics, political economy, and
law and economics. The first column includes all coauthored papers published between
1980 and 1998 while the next two columns restrict attention to the 1980s (1980-1989) and
1990s (1990-1998).
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Figure 2: Changes in pattern of coauthoring with similar and distant authors
between the periods of 1980-1989 and 1990-1998
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The two diagrams on the left illustrate changes in coauthoring between US coauthors while the
two diagrams on the right show changes in coauthoring between US and foreign coauthors. In
each case the top diagram shows coauthoring patterns in the 1980s and the bottom diagram shows
patterns in the 1990s. In each diagram we classify all coauthored papers along two dimensions:
coauthoring with close (D = 0) and distant (D = 1) authors and coauthoring with similar (S = 1)
and dissimilar (S = 0) authors.
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Table 4: Estimated increase in preference for coauthoring with distant/similar
foreign coauthors between the periods 1980-1989 and 1990-1998

Variable (1) (2) (3) (4)

α90
D − α80

D 0.091 0.098 0.062 -0.029
(0.118) (0.137) (0.159) (0.151)

α90
S − α80

S 0.176∗ 0.220∗ 0.236∗ 0.237∗

(0.075) (0.097) (0.108) (0.107)

Field Controls No Yes Yes Yes

AUSPEC Controls No No Yes No

AUPREV Controls No No No Yes

N=1772

Significance levels: † : 10% ∗ : 5% ∗∗ : 1%

Standard errors are shown in parentheses. Distance is measured by NATDIFF. The field
controls create 17 cells and include experimental economics, micro theory, industrial or-
ganization, finance, macro, international, development, urban economics, history, public
finance, labor economics, econometrics, productivity, environmental economics, political
economy, and law and economics. The second column adds controls for coauthor spe-
cialization using the median values of AUSPEC1 and AUSPEC2 as cutoffs to distinguish
between non-specialized and specialized authors. These controls subdivide each field cell
into four subcells. The third column adds controls for the number of previously published
papers by each coauthor using the median values of AUPREV1 and AUPREV2 as cutoffs.
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Table 5: Estimated increase in preference for coauthoring with distant/similar US
coauthors between the periods 1980-1989 and 1990-1998

Variable (1) (2) (3) (4)

α90
D − α80

D 0.276∗∗ 0.289∗∗ 0.290∗ 0.294∗

(0.091) (0.108) (0.127) (0.123)

α90
S − α80

S 0.153† 0.189† 0.213† 0.190
(0.093) (0.110) (0.129) (0.126)

Field Controls No Yes Yes Yes

AUSPEC Controls No No Yes No

AUPREV Controls No No No Yes

N=1415

Significance levels: † : 10% ∗ : 5% ∗∗ : 1%

Standard errors are shown in parentheses. Distance is measured by LONGDIST. The
field controls create 17 cells and include experimental economics, micro theory, industrial
organization, finance, macro, international, development, urban economics, history, public
finance, labor economics, econometrics, productivity, environmental economics, political
economy, and law and economics. The third column adds controls for coauthor specializa-
tion using the median values of AUSPEC1 and AUSPEC2 as cutoffs to distinguish between
non-specialized and specialized authors. These controls subdivide each field cell into four
subcells. The fourth column adds controls for the number of previously published papers
by each coauthor using the median values of AUPREV1 and AUPREV2 as cutoffs.
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Table 6: Average individual separation of coauthors in economic journals

20 years 15 years 20 years 15 years
> 2 publ. > 2 publ.

pre-1989 n 1813 1420 889 658
L 2.54 2.52 2.58 2.55

Ŝ 8.57 9.34 7.87 8.37
pre-1999 n 2629 1790 1177 801
(unadj.) L 2.73 2.72 2.88 2.80

Ŝ 8.39 8.03 7.13 6.91
pre-1999 n 2435 1664 1067 748
(adj.) (4.36) (2.95) (2.95) (1.48)

L 2.61 2.59 2.69 2.63
(0.001) (0.001) (0.002) (0.003)

Ŝ 7.98 7.82 6.62 6.82
(0.029) (0.024) (0.029) (0.025)

The size of the giant connected cluster is n and the average number of links of every author in this
cluster is L. The average degree of separation is Ŝ. Each column corresponds to a different time
frame - the 20 year frame for example compares the period 1969-1988 (pre-1989) to 1979-1998
(pre-1999). The two right columns only include authors who had more than two publications
during the time frame. The adjusted pre-1999 network is obtained by (a) calculating the average
number of links in the pre-1989 network (C1) and the pre-1999 network (C2); and (b) deleting
links in the pre-1999 network randomly with probability 1 − C1

C2 . For this table the values of
C1
C2 were 0.930, 0.924, 0.896 and 0.911 (left to right). This link pruning to obtain the adjusted
network is replicated 50 times for each of the four columns and we report the average cluster size
n, link number L and degree of separation Ŝ from these simulations. Sample standard errors are
shown in parenthesis.
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