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Abstract

Social networks can facilitate informal lending and risk-sharing in situations where for-
mal institutions such as banks and insurance companies do not exist. The social collateral
approach provides an analytically tractable framework that can be used to analyze a wide
range of informal transfers. Moreover, the approach is easily amenable to empirical analy-
sis.
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1 Introduction

Many fundamental economic institutions facilitate transfers across time. Banks take deposits

and repackage them as loans. Insurance companies mitigate idiosynchratic risk across a large

pool of agents. These institutions can only function if they are able to control moral hazard:

debtors have to repay their loans and victims of adverse shocks have to be able to rely on their

insurance policy to make transfers. Developed economies usually rely on the legal system to

protect lenders and policy holders.

However, developing countries often lack a reliable legal system which raises the transaction

costs of providing loans or insurance. Even developed economies often require lenders to

own physical collateral that can be used to secure loans and thus lower transaction costs.

Certain groups of borrowers, such as entrepreneurs starting a business, frequently lack physical

collateral. In these situations, informal lending within close-knit communities can substitute

for formal transfers even in the absence of physical collateral. But what mechanisms make

such informal arrangements work and control for moral hazard? How can a lender trust that

an informal loan will be repaid in the future? How much assistance can a farmer with a bad

harvest realistically expect from his extended family and friends? Social networks provide a

natural structure to study these phenomena: intuitively we expect that households receive

greater assistance from socially close neighbors with whom they share stronger ties. Moreover,

agents in a social networks play a repeated supergame with their friends and neighbors that

can help support informal lending and risk-sharing arrangements.

In this Chapter we describe the social collateral approach introduced by ? and ? as a

simple way to model informal transfers within social networks. This approach views social

links as “collateral” that can be used to control moral hazard: if a borrower does not repay a

loan (in case of borrowing) or if a an agent refuses to help a neighbor in need (in case of risk-

sharing), they risk losing the social link and its associated benefits. In this class of models, the

function of social capital (which is exactly the social network) is analogous to the role function

of physical collateral in formal transfer arrangements.

The social collateral approach makes two key simplifying assumptions that keep the model

analytically tractable and empirically relevant. First of all, the entire network supergame is

collapsed into a two-period game: borrowing or risk-sharing arrangements are implemented in

period 1 and out-of-equilibrium punishments occur in period 2. Second, there is no explicit

group punishment (such as ostracism) – not repaying a loan, for example, only jeopardizes

the direct link between the borrower and the lender (or intermediary). However, it can be

shown that group punishments that are robust to coalitional deviations can reduce the set

of implementable outcomes (under certain conditions) to the same set that is implementable

through direct punishment schemes.
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2 Empirical Facts

Before discussing the social collateral approach in detail, it is useful to summarize some of the

main findings of the empirical literature on informal transfers.

First of all, informal transfers are remarkably successful in mitigating income risk on the

village level. In particular, ? finds that the full insurance model where agents all agents pool

their income provides a good benchmark for understanding consumption in Indian villages.1

Second, transfers are highly local and tend to occur between socially close households. ?

find that transfers take place primarily through networks of friends and relatives rather than at

the village level. Similarly, ? collect detailed data on insurance networks within a single village

in Tanzania. They find that networks are not clustered but largely overlapping. They also

confirm the effectiveness of these insurance networks in mitigating income risk: they cannot

reject full insurance at village level for food insurance, and find partial insurance of non-food

consumption in the networks. ? exploit a natural experiment where the Mexican government

made cash transfers to subset of households in Mexican villages. They find that receiving

households share these transfers with relatives in the village (but not with non-relatives). This

paper contributes by using exogenous income variation to examine the risk sharing network

and extent of full insurance. ? use a field experiment with 70 Columbian villages show that

pairs of participants who are friends or relatives are more likely to form risk-sharing groups

which suggests that social obligations to neighbors in the social network are an important

determinant of informal transfers.

While social proximity is typically highly correlated with geographic distance remittances

between relatives who live far apart are an important exception because they can help mit-

igate local shocks. ? finds evidence that insurance is an important motive in remittances.

? show that remittances respond to incomes shocks which is consistent with an insurance

motivation. They cannot reject the hypothesis that households with a migrant worker are

fully insured against income shocks, and can strongly reject for households without a migrant

worker. Technological advances have reduced the transaction costs of remittances. ? show

that M-pesa cash transfers through mobile phones insulate households from shocks thanks to

an increase in remittances from a diverse pool of senders.

Third, informal transfers often take the form of loans. ? was one of the first papers to

demonstrate that informal credit contracts play a direct role in pooling risk, as repayments

owed by borrowers depend on the random shocks faced by both the borrowers and lenders. ?

use detailed data on gifts, loans, and asset sales to examine which methods are used to cope

1However, some papers have also documented substantial deviations from the full risk-sharing benchmark.
? find little evidence of consumption smoothing during a period of severe drought in Burkina Faso. ? find that
informal insurance against several illness is very imperfect. ? show that risk-sharing does not always occur even
within households as women in rural Ethiopia bear the brunt of adverse shocks. ? also reject full risk-sharing
within families using PSID data.
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Figure 1: Informal borrowing in some sample social networks
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with income shocks. They find that gifts are loans are the most common mechanisms.

3 Informal Lending and Trust

We consider a situation where a borrower needs the asset of a lender to produce social sur-

plus.2 In the absence of legal contract enforcement, borrowing must be secured by an informal

arrangement supported by the social network: connections in the network have associated

consumption value, which serve as social collateral to enable borrowing.

3.1 Motivating Example

To understand the basic logic of the model, consider the examples in Figure ??, where agent

s would like to borrow an asset, like a car, from agent t, in an economy with no formal

contract enforcement. In Figure ??A, the network consists only of s and t; the value of their

relationship, which represents either the social benefits of friendship or the present value of

future transactions, is assumed to be 2. As in standard models of informal contracting, t will

only lend the car if its value does not exceed the relationship value of 2.

More interesting is Figure ??B, where s and t have a common friend u, the value of

the friendship between s and u is 3, and that between u and t is 4. Here, the common

friend increases the borrowing limit by min [3, 4] = 3, the weakest link on the path connecting

borrower and lender through u, to a total of 5. The logic is that the intermediate agent

u vouches for the borrower, acting as a guarantor of the loan transaction. If the borrower

chooses not to return the car, he is breaking his promise of repayment to u, and therefore loses

u’s friendship. Since the value of this friendship is 3, it can be used as collateral for a payment

of up to 3. For the lender t to receive this amount, u must prefer transmitting the payment to

2This asset might represent a factor of production, such as a farming tool, a vehicle or an animal; it could
also be an apartment, a household durable good or simply a cash payment.
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losing the friendship with him, explaining the role of the weakest link.

Finally, Figure ??C illustrates the limits of ostracism under a coalitional refinement. As-

sume that the lender also has a “cousin” r with whom he has a relationship valued at 5. If

the cousin could also act as a guarantor for s then the borrowing limit might increase by an

additional 5 to a total of 10. However, the cousin’s threat to break off her relationship with

the borrower is not credible: for any loan amount exceeding 5 the borrower could propose a

“side-deal” to intermediary u and her cousin such that u can reimburse the lender for the her

guaranteed amount (which is at most 3) while transferring 0 to the cousin in case of default.

The cousin and intermediary are not worse off as a result of this side-deal. The borrower will

use her friendship and therefore incur a combined loss of at most 5 - but since she borrowed

an amount exceeding 5 she is strictly better off under such a side-deal. Hence, group-level

punishment of the borrower that involves agents that are unconnected to the lender (such as

the cousin in panel C) is not credible under coalitional refinement.

3.2 Model

Formally, a social network G = (W,E) consists of a set W of agents (vertices or nodes) and a

set E of edges (links), where an edge is an unordered pair of distinct vertices. Each link in the

network represents a friendship or business relationship between the two parties involved. We

formalize the strength of relationships using an exogenously given capacity c(u, v).

Definition 1. A capacity is a function c : W ×W → R such that c(u, v) > 0 if (u, v) ∈ E and

c(u, v) = 0 otherwise.

The capacity measures the utility benefits that agents derive from their relationships.

For ease of presentation, we assume that the strength of relationships is symmetric, so that

c (u, v) = c (v, u) for all u and v.

The model consists of five stages.

Stage 1: Realization of needs. Two agents s and t are randomly selected from the

social network. Agent t, the lender, has an asset that agent s, the borrower, desires. The

lender values the asset at V , and it is assumed that V is drawn from some prior distribution F

over [0,∞). The identity of the borrower and the lender as well as the value of V are publicly

observed by all players.

Stage 2: Borrowing arrangement. At this stage, the borrower publicly proposes a

transfer arrangement to all agents in the social network. The role of this arrangement is to

punish the borrower and compensate the lender in the event of default. A transfer arrangement

consists of a set of transfer payments h (u, v) for all u and v agents involved in the arrangement.

Here h (u, v) is the amount u promises to pay v if the borrower fails to return the asset to

the lender. Once the borrower has announced the arrangement, all agents involved have the
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opportunity to accept or decline. If all involved agents accept, then the asset is borrowed and

the borrower earns an income ω (V ), where ω is a non-decreasing function with ω (0) = 0. If

some agents decline, then the asset is not lent, and the game moves on directly to stage 5.

Stage 3: Repayment. Once the borrower has made use of the asset, he can either return

it to the lender or steal it and sell it for a price of V . If the borrower returns the asset then

the game moves to the final stage 5.

Stage 4: Transfer payments. All agents observe whether the asset was returned in

the previous stage. If the borrower did not return the asset, then the transfer arrangement is

activated. Each agent has a binary choice: either he makes the promised payment h (u, v) in

full or he pays nothing. If some agent u fails to make a prescribed transfer h (u, v) to v, then

he loses his friendship with agent v (i.e., the (u, v) link “goes bad”). If (u, v) link is lost, then

the associated capacity is set to zero for the remainder of the game. We let c̃ (u, v) denote the

new link capacities after these changes.

Stage 5: Friendship utility. At this stage, agents derive utility from their remaining

friends. The total utility enjoyed by an agent u from his remaining friends is simply the sum

of the values of all remaining relationships, i.e.,
∑

v c̃ (u, v).

3.3 Analysis

We are interested in characterizing the maximum amount T st(c) that agent s can borrow from

lender t for a given social network that is characterized by the capacity function c. We will

refer to T st(c) as the borrowing limit.

The model is a multi-stage game with observed actions. We focus on the set of pure strategy

subgame perfect equilibria. In order to rule out non-credible equilibria (as shown in Figure

??C) we require that all equilibria are “side-deal proof”.

Consider the subgame starting in stage 2, after the identities of the borrower and the lender

and the value of the asset are realized, and for any pure strategy σ, let Uu (σ) denote the total

utility of agent u in this subgame. We formalize the idea of a side-deal as an alternative

transfer arrangement h̃ (u, v) that s proposes to a subset of agents S ⊂ W after the original

arrangement is accepted. If this side-deal is accepted, agents in S are expected to make transfer

payments according to h̃, while agents outside S continue to make payments described by h.

In order for the side-deal to be credible to all participating agents, it must be accompanied by

a proposed path of play that these agents find optimal to follow. This motivates the following

definition.

Definition 2. A side-deal with respect to a pure strategy profile σ is a set of agents S, a

transfer arrangement h̃ (u, v) for all u, v ∈ S, and a set of continuation strategies {σ̃u|u ∈ S}
proposed by s to agents in S at the end of stage 2, such that
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(i) Uu

(
σ̃u, σ̃S\u, σ−S

)
≥ Uu

(
σ′u, σ̃S\u, σ−S

)
for all σ′u and all u ∈ S,

(ii) Uu (σ̃S , σ−S) ≥ Uu (σS , σ−S) for all u ∈ S,

(iii) Us (σ̃S , σ−S) > Us (σS , σ−S).

Condition (i) says that all agents u involved in the side-deal are best-responding on the new

path of play, i.e., that the proposed path of play is an equilibrium for all agents in S conditional

on others playing their original strategies σ−S . Condition (ii) says that if any agent u ∈ S

refuses to participate in the side-deal, then play reverts to the original path of play given by

σ. Finally, (iii) ensures that the borrower s strictly benefits from the side-deal.

Definition 3. A pure strategy profile σ is a side-deal proof equilibrium if it is a subgame perfect

equilibrium that admits no side deals.

We are now almost ready to state the main result in ?. The final pre-requisite is a definition

of maximum flow which is a well known concept in optimization theory and computer science

?.

Definition 4. An s → t flow with respect to capacity c is a function f : G × G → R that

satisfies

(i) Skew symmetry: f(u, v) = −f(v, u).

(ii) Capacity constraints: f(u, v) ≤ c(u, v).

(iii) Flow conservation:
∑

w f(u,w) = 0 unless u = s or u = t.

The value of a flow is the amount that “leaves” the borrower s, given by |f | = ∑w f(s, w).

Let T st(c) denote the maximum value among all s→ t flows.

The maximum flow captures the intuitive notion of “sum of weakest links” for all distinct

paths that connect a borrower and a lender. For example the maximum flow between borrower

and lenders in Figure ?? is equal to 2, 5 and 5 in panels A to C. It turns out that the maximum

flow exactly characterizes the borrowing limit.

Theorem 1. There exists a side-deal proof equilibrium that implements borrowing between s

and t if and only if the asset value V satisfies

V ≤ T st(c). (1)

3.4 Empirical Application

The social collateral model can be easily applied to empirical applications where the social

network is known. In particular, the maximum flow can be efficiently calculated using the

Ford-Fulkerson algorithm (?). ? report on one empirical application that uses data from two

Peruvian shantytowns. In 2005, the authors collected social network data on 299 households.
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Figure 2: Propensity to borrow as a function of direct and indirect flow

In particular, the authors recorded, for each link, how much time the subjects spends on average

with the friend or acquaintance per week and whether the subject ever borrowed money from

each social link.

The amount of time provides a convenient proxy for the strength of a relationship. In the

data, the distribution of time spent together is skewed: the average responder spends fewer

than 6 minutes with the bottom 10 percent of his/her friends and more than 3 hours with the

top 10 percent. To obtain a more homogenous measure, the authors define normalized time

for two connected agents u and v as the value, for the amount of time they spend together,

of the empirical cumulative distribution function of time spent together in their community.

With this definition, the empirical distribution of normalized time τ (u, v) across all connected

pairs is a discretized uniform distribution on the unit interval in each community.

The authors also assume that link capacities are created by an increasing production func-

tion g such that c (u, v) = c · τ (u, v), i.e., spending more time together results in stronger

links. They also restrict attention to the subgraph that includes all direct links of s and t

(hence borrowing arrangement can only involve common friends). This allows for a simple

decomposition of the trust flow between s and t as

T st (c) = c · τ(s, t) + c ·
∑

v∈Ns∩Nt

min(τ(s, v), τ(v, t)), (2)

where the first term represents the direct flow and the second term is the indirect flow. Here

Ns is the set of direct friends of agent s.

Table ?? group all social links of each borrower into four categories along two dimensions:

whether the direct flow between borrower and friend is below or above the average direct

flow, and whether the indirect flow between borrower and friend is below or above the average
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indirect flow. The authors then calculate the share of loans that fall into each of the resulting

four categories. About 14.5 percent of loans involve borrower/lender pairs with both below-

average direct ow and below-average indirect flow. Almost double as many loans involve

borrower/lender pairs with either above-average direct or above-average indirect ow. About

three times as many loans involve borrower and lenders with both above-average direct and

above-average indirect flow. Indirect paths appear to play an important role in creating social

collateral for borrowing.3

4 Consumption Risk-sharing

We now turn our attention to risk-sharing (?). The application of the social collateral model

in this context is very similar to borrowing.

4.1 Motivating Example

To gain some intuition consider the three networks in Figure ??. We assume that with proba-

bility 1
2 agent s (previously the “borrower”) experiences a negative endowment shock −x while

agent t (previously the “lender”) experience a positive shock +x. With probability 1
2 the shocks

are reversed. All other agents in the economy experience no shocks. If agents have standard

concave utility over consumption, the egalitarian social planner would optimally ensure that

everyone in the economy consumes 0.

However, the planner’s ability to redistribute endowments might be limited by the social

network. For example, consider panel A of Figure ?? and the state of the world where t has

the positive endowment shock. Intuitively, the planner should not expect agent t to agree to

any transfer that exceeds 2 since the worst punishment that could be inflicted on her would

be to lose her link which is worth 2. More generally, we should not expect that t will ever

transfer more than the maximum flow between s and t: by the Ford-Fulkerson theorem any

set of agents that includes t and excludes s will “cut” a set of links whose sum is greater or

equal to the maximum flow T st(c). Moreover, there is at least one such set where the sum of

cut links is exactly equal to T st(c). Therefore, whenever the social planner requires agent t to

transfer more than T st(c), then agent t could assemble a coalition of agents such that the cost

of potentially lost links (a proxy for the worst punishment that can be imposed by the planner

on the group of deviators) is lower than t’s transfer. In other words, agent t could reimburse

members of her coalition for lost links instead of making a requested payment. This limits the

extent of transfers between agents s and t in panels B and C of Figure ?? to a maximum of 5.

3? find a similar result in their analysis of data from Indian villages – however, they rely on a different
model.
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4.2 Risk-sharing Arrangements

We now turn to the formal model which allows us to analyze risk-sharing when more than

2 agents receive shocks. In our model, agents face income uncertainty due to factors such

as weather shocks and crop diseases. We denote the vector of endowment realizations by e =

(ei)i∈W , which is drawn from a commonly known joint distribution. The vector of endowments

is observed by all agents.

A risk-sharing arrangement specifies a collection of bilateral transfer payments te =
(
teij

)
,

where teij is the net dollar amount transferred from agent i to agent j in state of the world e,

so that teij = −teji by definition. The risk-sharing arrangement te implements a consumption

allocation xe where xei = ei −
∑

j t
e
ij . For simplicity, we suppress in notation the dependence

of the transfers teij and consumption allocation xe on e.

An agent who consumes xi enjoys utility Ui (xi, ci), where ci =
∑

j c(i, j) denotes the

total value that agent i derives from all his relationships in the network, and U is strictly

increasing and concave. The case where consumption and friendship are perfect substitutes

is analytically convenient but the qualitative results can be extended to the case of imperfect

substitutes. The agent’s ex-ante expected payoff is EUi (xi + ci), where the expectation is

taken over the realization of endowment shocks.

We say that a risk-sharing arrangement is incentive compatible if every agent i prefers to

make each of his promised transfers tij rather than lose the (i, j) link and its associated value.

Because consumption and friendships are perfect substitutes, incentive compatibility implies

tij ≤ c(i, j).
By construction, risk-sharing arrangement are robust to coalitional deviations. To see this,

we need some definitions. For any group of agents F , we define the perimeter c [F ] of F to be

sum of the values of all links between the group and the rest of the community:

c [F ] =
∑

i∈F , j /∈F

c (i, j) (3)

Intuitively, the perimeter is the maximum extent to which the rest of the community could

punish group F using ostracism. Similarly, we define the total endowment of the group as eF

and their total consumption under a risk-sharing arrangement as xF .

Definition 5. A consumption allocation x is coalition-proof if eF − xF ≤ c [F ] holds for all

groups of agents F .

It is easy to see that a risk-sharing arrangements implements a consumption allocation

which is coalition-proof. Hence, no group of agents has an incentive to deviate: the net

transfer between any group of agents and the rest of the community, defined as the difference
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between the group’s total endowment and total consumption, does not exceed the sum of the

values of all links connecting the group and the rest of the community.

4.3 Equivalence Result

The definition of an informal risk-sharing arrangement looks at first quite restrictive because

the social network not just constrains the feasible consumption allocations but also serves as

a conduit for transfers. For example, could a village elder (as a stand-in for the constrained

social planner) achieve superior consumption allocations by simply taxing households with

positive endowment shocks and redistribute the proceeds to households with negative shocks?

This elder would not have to worry about finding a set of bilateral transfers to implement

her preferred allocation and instead would only have to ensure that the final allocation is

coalition-proof.

Surprisingly, the answer to this question is negative.

Theorem 2. A consumption allocation x that is feasible (
∑
xi =

∑
ei) and coalition-proof

can be implemented by an incentive-compatible informal risk-sharing arrangement.

The theorem states any the elder implements exactly the same insurance arrangements as

is possible with link-level punishment. The proof builds again on the mathematical theory of

network flows.4

Theorem ?? has two main implications. First of all, the results shows that it is sufficient to

study risk-sharing arrangements. Links matter not because they act as conduits for transfer,

but because they define the costs of deviations, and hence the pattern of obligations in the

community. A second implication of the theorem is that it relates the geometry of the network

to its effectiveness for risk-sharing.

4.4 Limits of Risk-Sharing

How effective are typical social networks in sharing risk? Can local obligations to help close

neighbors, relatives and friends aggregate to effective risk-sharing on the village level? The

research of ? suggests the answer should be affirmative since the full insurance model provides

a surprisingly good benchmark even though it is typically rejected in the data.

It turns that full risk-sharing under any endowment realization is generally impossible

unless the social network is extremely expansive. To measure expansiveness, we define the

4In particular, (?) show that finding a transfer representation for a coalition-proof allocation is equivalent
to finding a flow in an auxiliary network with two additional nodes s and t added. According to the theorem
of Ford and Fulkerson (1956), the maximum flow equals to the value of the minimum cut, i.e., the smallest
capacity that must be deleted so that s and t end up in different components. They prove that each cut in the
flow problem corresponds to a coalition, and then the coalition-proofness condition ensures that the cut values
are high enough so that the desired flow can be implemented.

11



Figure 3: Expansion properties of three sample networks

A. Line

F
c[F ]∼ 1

B. Plane

F

c[F ]∼ |F|1/2

C. Binary tree

F

c[F ]∼ |F|

perimeter-area ratio for a set of agents F as a[F ] = c [F ] / |F |, where area stands for the

number of agents in F . Intuitively, a [F ] represents the group’s maximum obligation to the

community relative to the group’s size. Figure ?? shows typical sets F for three distinct

geometries. Panel A shows a line which has very low expansion properties: a large connect set

will have perimeter-area ratio equal to 2
|F | . In contrast, the plane in panel B has significantly

better expansion properties as its typical perimeter is of order
√
|F |. Finally, the binary tree

in panel C is an expander graph whose perimeter-area ratio is always bounded away from 0

for arbitrary sets F .

Intuitively, we expect that networks with better expansion properties allow for more risk-

sharing because it is more difficult to find a blocking coalition as alluded to in theorem ??.

The next proposition makes this precise. To simplify the exposition, we focus from now on the

special case of i.i.d uniform endowment shocks over the interval [−1, 1].5

Proposition 1. [Limits to full risk-sharing] Under the aboive assumptions, equal sharing is

supported by an incentive-compatible risk-sharing arrangement if and only if for every subset

of agents F the perimeter-area ratio satisfies a [F ] ≥ 2
(

1− |F |
|W |

)
.

The condition implies that a [F ] must be greater than the constant S/2 for any set of size

at most half the community. In particular, an implication for large networks is that a [F ] must

be bounded away from zero since the members of F must be willing to provide resources to the

5The results of ? apply to general endowment distributions as long as the tails of the distributions are not
too thick and shocks are not too correlated.
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rest of the community even when they all get the highest possible realization while everyone

outside gets the minimum. This implies that essentially the only type of graph that allows full

risk-sharing for any endowment realization are essentially expander graphs such as the binary

tree.

4.5 Line and Plane

We now show that risk-sharing on the plane and similar networks is very good, and substantially

better than on the line. It is helpful to first develop an intuition for this result

Plane networks turn out to be just sufficiently well-connected to generate very good risk-

sharing in most states of the world. The key insight is that with a two-dimensional structure,

outcomes in which the coalitional constraint binds under equal sharing become rare. To see

the logic, consider the regular plane with the i.i.d. [−1, 1] shocks. As we have seen, equal

sharing fails because households in a large n by n square F would need to give up n2 resources

if all of them get a positive +1 shock, which is an order of magnitude larger than the perimeter

c [F ] ∼ n.

The key is that for large n, such extreme realizations are unlikely, and in typical realizations

the required transfers do not exceed the perimeter. With i.i.d. shocks, the standard deviation

of the group’s endowment is only n, which is only of order n even though it is the sum of n2

random variables – intuitively, a lot of the idiosyncratic shocks cancel out within the group.

Thus the typical shock in F has the same order of magnitude as the maximum pledgeable

amount, and hence potentially deviating coalitions are rare. By way of contrast, the argument

breaks down for the line, since the perimeter of even large interval sets is only 2, a constant.

To formulize these ideas, we assume that agents have quadratic utility function such that

we can express the average utility loss relative to the benchmark of equal sharing as

SDISP (x) =

[
E

1

|W |
∑
i∈W

(xi − e)2
]1/2

, (4)

which is the square-root of the expected cross-sectional variance of x. For non-quadratic

utilities, SDISP (x) can be interpreted as a second order approximation of the utility based

measure.

Proposition 2. There exist positive constants K, K ′ and K ′′ such that

(i) On the infinite line with capacities c and i.i.d. shocks, we have SDISP (x) ≥ K/c for

all incentive-compatible risk-sharing arrangements.

(ii) On the infinite plane with capacities c, we have SDISP (x) ≤ K ′ exp
[
−K ′′c2/3

]
for

some incentive-compatible risk-sharing arrangement.
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This Proposition characterizes the rate of convergence to full risk-sharing as capacities

increase. The contrast between the line and plane is remarkable. Risk-sharing is relatively

poor on the line: SDISP goes to zero at a slow polynomial rate of 1/c as c goes to infinity.

In contrast, the rate of convergence for the plane is exponentially fast,confirming our intuition

that agents are able to share typical shocks due to the more expansive structure.

The difference in the rates of convergence become quickly apparent in simulations. Figure

?? compares risk-sharing on equally-sized line and plane (100 agents each) while fixing initial

endowments and the total capacity per agent across both networks.6 SDISP declines rapidly

on the plane and full risk-sharing is already achieved at capacity 1.4 per agent. In contrast,

SDISP declines more slowly on the line and full risk-sharing requires capacity per agent far

exceeding 2.

? extend the result for the plane to geographic networks which exhibit a two-dimensional

sub-structure but are less regular than the plane. Using data from Peruvian social networks

they show that real-world networks are geographic networks but not expander graphs. Hence,

the social collateral model can explain very good risk-sharing in real-world social networks

where agents only have local obligations to a small subset of the population (such as close

neighbors, friends and relatives).

4.6 Risk-sharing Islands

? also characterize the micro-structure of specific risk-sharing arrangements. Intuitively, the

network is partioned into a set of contiguous “risk-sharing islands” as shown in Figure ?? such

that agents within the same island consume the same amount while agents in neighboring

island consume either more or less. Moreover, the IC constraints for transfer across islands

bing while they are slack within islands.

This phenomenon has two important implications.

Local sharing. When an agent in the interior of an island receives an endowment shock she will

share the risk first locally with other neighbors in her own risk-sharing island. If consumption

within the island increases (or decreases) sufficiently so that IC constraints to neighboring

islands no longer bind, then the shock will also be shared with neighboring islands. In that

sense, risk-sharing in the social collateral model is local.

Endogenous socialization. Compare two geometries, such as line and plane, where risk-

sharing islands have the same average size (which translates into comparable risk-sharing

in both networks). Then the more expansive network will tend to have a higher share of

agents at the boundary of a risk-sharing island. Therefore, the incentive of agents to invest

in socialization is at the margin greater in the more expansive network. Hence, the very

6If we think of capacities as social collateral then this exercise compared a linear and planar network with
the same amount of social capital per agent.
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Figure 4: Risk-sharing simulations on line and plane for different capacities

Panel A: initial endowments (uniform over [−1,1])
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Panel B: risk-sharing with total capacity 1 per agent
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Panel C: risk-sharing with total capacity 1.4 per agent
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Panel D: risk-sharing with total capacity 2 per agent
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features which create good risk-sharing on expansive networks such as the plane also make

these networks more stable because they increase agents’ incentives to invest in socialization.

5 Other Mechanisms

At this point, it is useful to contrast the social collateral approach to other theory frameworks.

5.1 Altruism

The social collateral approach assumes that agents are selfish and attributes any lending or

risk-sharing to repeated game effects. However, we might expect that people feel particularly

altruistic towards family, friends and neighbor and might for this reason alone provide help.

? analyze this question by matching student subjects to direct and indirect friends at various

social distances and have these pairs of subjects play a series of dictator games. They use a

within-subject design where the recipient either finds out or does not find out the dictator’s

identity. This allows them to distinguish directed altruism (being nice to one’s friends due to

“warm glow”) from repeated game effects. There is substantial directed altruism towards direct

friends but indirect friends are treated similarly to a randomly picked nameless individuals

within the network. Hence, directed altruism might not be able to explain transfers within the

network that do not involve direct friends. In a closely related paper, ? have villagers in rural

Paraguay play variants of the dictator game to examine motives for sharing. They correlate

behavior measured in the experiment with the real world sharing outside the experiment to

find that repeated-game motives seem to better explain sharing in the real world.

Earlier work on lifetime (inter-vivos) transfers also rejects the altruism hypothesis. For

example, ? find that parents increase transfers to children by only 13 cents for every dollar

that is redistributed from child to parent. ? and ? analyze the patterns of intergenerational

transfers and also find that they are consistent with exchange motives rather than altruism.

5.2 Sharing Rules and Bargaining

? abstract away from the enforcement problem within connected networks and instead assume

that agents within a connected component share resources equally (for example, social neigh-

bors might repeatedly pool and share their income which eventually results in equal sharing

across the component). ? extend this basic idea and analyze an environment where agents

within a connected component bargain over the joint surplus. They show that the surplus is

allocated according to the Myerson value where more central agents receive higher shares. In

these papers, the network defines the bargaining position of agents rather than enforcement as
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in the social collateral approach.7

5.3 Other Repeated Game Models

There are a number of papers in the literature which also study enforcement in a repeated

game context.

? formulate a theory of limited commitment to explain deviations from full risk-sharing

in village economies. They test their model with data from three Indian villages and find

that the model can fully explain the dynamic response of consumption to income, but cannot

explain the distribution of consumption across households (also see ? for empirical evidence).

The social collateral model can be thought as a special case of the limited commitment model

where the social network defines the set of constraints on bilateral transfers.

? analyze a model where agents’ needs and transfers are not perfectly observed (unlike in

the social collateral model). This raises a new set of questions such as whether agents have

an incentive to communicate deviations and and how quickly information spreads within the

network. They show that equilibria with severe group punishments (permanent ostracism) are

difficult to sustain because cheated-upon agents might not have an incentive to communicate

truthfully.

Finally, ? propose a “social quilt” model where agents play continuous-time Prisoner’s

dilemma games with their social neighbors under perfect information. The authors focus on

equilibria that are renegotiation-proof and characterize the set of stable networks. They show

that these network only include “supported links” such that any two friends who exchange

favors have a common friend. The empirical predictions of their model are in fact very similar

to the ones reported in Section ??. The biggest difference is that the social collateral approach

takes the social network as exogenously given and then finds the set of feasible borrowing or

risk-sharing arrangements within that context.

5.4 Endogenous Network

Another strand of the literature analyzes network formation when agents form links to mitigate

risk. Endogenous network formation can be inefficient because agents do not fully internalize

the benefits and costs of forming links (?, ?). ? provide evidence from rural India that families

arranges marriages of daughters to distant locations to mitigate income shocks.8 ? find that

geographic proximity is a strong correlate of risk sharing networks, likely because it facilitates

monitoring and enforcement (also see ?).

7In related empirical work, ? use PSID data to show that risk-sharing within the extended family is not
independent of the distribution of resources.

8However, ? argues the existence of sub-caste networks that provide mutual insurance to their members
restricts marriage mobility.
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6 Conclusion

The social collateral approach provides an analytically tractable and empirically relevant way

of modeling informal transfers in social networks. This approach has been applied to analyze

(1) borrowing and trust in networks and (2) consumption risk-sharing.
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