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MIT

April 14, 2000

Abstract

I analyze a simple evolutionary model of residential segregation based
on decentralized racism which extends Schelling’s (1972) well-known tipping
model by allowing for local interaction between residents. The richer set-up
explains not only the persistence of ghettos, but also provides a mechanism
for the rapid transition from an all-white to an all-black equilibrium.
On one-dimensional streets segregation arises once a group becomes suf-

ficiently dominant in the housing market. However, the resulting ghettos
are not persistent, and periodic shifts in the market can give rise to “avenue
waves”. On two-dimensional inner-cities, on the other hand, ghettos can be
persistent due to the “encircling phenomenon” if the majority ethnic group
is sufficiently less tolerant than the minority. I review the history of residen-
tial segregation in the US and argue that my model can explain the rapid
rise of almost exclusively black ghettos at the beginning of the 20th century.
For the analysis of my model I introduce a new technique to character-

ize the medium and long-run stochastic dynamics. I show that clustering
predicts the behavior of large-scale processes with many agents more accu-
rately than standard stochastic stability analysis, because the latter concept
overemphasizes the ’noisy’ part of the stochastic dynamics.
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1 Introduction

Residential segregation along ethnic and racial lines is a fact of life in the US
and in many other countries. There is a substantial body of literature which
documents the economic and social costs of segregation. Ethnic sorting retards
inter-generational improvements for relatively disadvantaged groups1, reduces em-
pathetic connections between ethnic groups and therefore diminishes political sup-
port for redistribution (as in Cutler, Elmendorf and Zeckhauser (1993)) and in-
creases statistical discrimination because whites, for example, end up relying more
on stereotypes of blacks instead of actual experience (Wilson 1987).
While we know a great deal about the outcomes of residential segregation on

society the mechanism which gives rise to ghettos2 in the first place is much less
understood. This paper provides a simple theory of segregation based on decentral-
ized racism which can explain the key empirical facts. First, ghettos historically
developed fairly rapidly: in the US the core of the black ghettos formed between
1900 and 1920. Second, black ghettos in particular tend to be very persistent over
time once they cover a large contiguous geographical area, such as Harlem in New
York City.3 Ghettos are far less stable, on the other hand, if they extend only over
a single street as examples from Chicago’s avenues at the turn of the century show.
My model abstracts away from other contributing factors to segregation, such as
sorting by socio-economic differences and collective-action racism. I argue in the
empirical part of my paper that these effects on their own cannot explain the key
empirical facts about segregation in the US.
Existing models of segregation are typically variants of Schelling’s (1972) in-

fluential tipping model which can generate multiple stable segregation equilibria.4

But like most models with multiple equilibria, the basic tipping model suggests no

1Borjas (1995) found that ethnicity has an external effect even after controlling for parental
background and the socio-economic characteristics of a neighborhood. Neighborhood peers ap-
pear to affect the skills and norms of the young in particular, such as the probability of being
involved in crime and the propensity of youths to be out of school or work (see, for example,
Case and Katz (1991), and Glaeser, Sacerdote, and Scheinkman (1996)). Cutler and Glaeser
(1997) compared the outcomes of blacks between cities and found that blacks in racially more
segregated cities earn less income and are more likely to become single mothers or drop out of
high school.
2The term “ghetto” is used nonpejoratively throughout the paper in order to denote a racially

or ethnically segregated community.
3Cutler, Glaeser and Vigdor (1997) documented that the correlation across cities between

segregation in 1890 and segregation in 1990 is as high as 50 percent. Residential segregation
affected all ethnic minorities in the US to varying degrees. For African Americans, however, it
is unique in its severity and persistence over several generations. Second- and third-generation
non-black immigrants generally lived in much less segregated neighborhoods than their parents.
For a good reference see chapter three in K. Taeuber and A. Taeuber (1965).
4For example, Galster (1990) and Cutler, Glaeser and Vigdor (1997) use variants of the tipping

model for their empirical studies.
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mechanism for moving between an all-white equilibrium and a ghetto equilibrium.
The theory can therefore explain the persistence but not the formation of ghettos.
Perhaps surprisingly, these limitations can be overcome by allowing for a richer
(and more natural) geometry of interaction between residents where agents care
more about neighbors who are geographically close to their apartment than about
residents further away.5

My model analyzes the location decision of two ethnic groups, which I refer
to as ’blacks’ and ’whites’ for convenience. The model is described by four ba-
sic parameters: the tolerance levels of both groups αb and αw, their balance λ in
the housing market and the geometry G of neighborhood interaction. The geome-
tries I mainly consider are one-dimensional streets and two-dimensional inner-cities
where residents only care about their direct neighbors. For completeness I also look
at bounded neighborhoods where each resident is neighbor to every other resident
in the area such that my model reduces to a variant of Schelling’s tipping model.
Residents leave the residential area randomly at a fixed rate and are replaced

by newcomers from the housing market where a share λ of apartment seekers are
white. Most newcomers, however, exhibit mild ethnic preferences and only consider
an apartment if they do not feel ’isolated’, i.e. at most a share 1

2
< α < 1 of their

prospective neighbors is of a different ethnicity. A small share ε of newcomers are
completely tolerant and do not care about the ethnicity of their neighbors. These
non-discriminating residents provide the ’noise’ which is necessary to move the
process from one equilibrium to the next.
On streets the relative strength of ethnic preferences alone cannot give rise to

segregation. Once fear of isolation interacts with the balance in the housing market,
however, streets can rapidly turn into ghettos. A sudden rise in the share of blacks
in the market can transform the residential area because blacks can ’invade’ the
street around small clusters of black residents which have formed on the street
by chance. The ’contagious’ dynamics of this transformation is reminiscent of the
model studied by Glenn Ellison (1993), who demonstrated how local interaction
can speed up convergence to the long-run equilibrium. My model highlights the
importance of the increase in the share of African Americans in the housing market
for the rise of black ghettos. This situation occurred at the beginning of the 20th
century when African Americans started to migrate from the rural South to the
booming industrial centers of the North.
Segregation on streets, however, is not persistent because the forces that give

rise to ghettos are symmetric: as soon as whites dominate the housing market
again, a ghetto can equally rapidly disintegrate. Temporary imbalances in the
housing market can therefore give rise to periodic transformations of ethnic neigh-
borhoods or “avenue waves”. In the US there existed a natural source of variation

5Incidentally Schelling himself sketched a two-dimensional model of segregation in his book
Micromotives and Macrobehavior (1978).
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Figure 1: Illustration of the dynamics of a continuous-time random walk over the
set of states {0, 1, .., n+ 2}

in the housing market balance for non-black minorities at the turn of the century
because large waves of immigrants from certain ethnic groups, such as Southern
Europeans, Scandinavians or Russians, entered the country at different points in
time. In section 5 I present evidence from Chicago which documents the occurrence
of “avenue waves” along the main arteries as predicted by my model.
Ghettos can exhibit pronounced persistence, however, once the process evolves

in a two-dimensional inner-city area. As long as blacks are sufficiently more tolerant
than whites the process will again give rise to rapid segregation as soon as blacks
dominate the housing market sufficiently. The resulting ghettos, however, will not
disintegrate after subsequent changes in the balance of the housing market. The
reason for this stasis is the “encircling phenomenon”: in two dimensions, randomly
forming clusters of white residents cannot expand as easily as on streets because
white residents at the convex boundary of the cluster have on average more black
than white neighbors. This prevents the kind of contagious dynamics through
which white clusters on streets can break up a black ghetto. Inner-city areas
therefore behave like hybrids: they can be transformed into ghettos (like streets)
which are subsequently stable (like the all-black equilibrium of Schelling’s tipping
model).
For the analysis of the medium and long-run behavior of my model I develop

a new technique to characterize the stochastic evolution of large-scale dynamical
systems, which I believe can be fruitfully applied to both existing and future mod-
els. The standard technique for understanding the long-run behavior of stochastic
dynamics in evolutionary game theory has been stochastic stability analysis, which
was introduced in the seminal work by Young (1993) and Kandori, Mailath and
Rob (1993) and recently extended by Ellison (1999). The model of this paper,
however, illustrates that stochastic stability can seriously mispredict the behavior
of a process with many agents. Incidentally, these are exactly the environments
where evolutionary reasoning seems most adequate.
The shortcomings of stochastic stability can be most easily explained with the

help of a simple example. Figure 1 illustrates the dynamics of a random walk on
the integers {0, 1, .., n+ 2} in continuous time. Between states 1 and n the process
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evolves according to the ’undisturbed’ dynamics, while between states 0 and 1
and between states n and n+ 2 the process is governed by ’noisy’ dynamics. For
any fixed size n only the state n + 2 is stochastically stable in the sense that the
process spends almost all its time at n+ 2 as the noise term ε becomes small. To
see the intuition for this result, note that it takes two mutations to leave the basin
of attraction of state n+ 2, but just one mutation to leave the basin of attraction
of state 0.6 This reasoning, however, does not take into account the nature of the
undisturbed dynamics at all, even through it pushes the process away from the
stochastically stable state.
Stochastic stability can thus lead us to mispredict the long-run behavior of the

process. Assume that we want to find the process inside a small δ-neighborhood
[(1− δ)n, n+ 2] of the stochastically stable state with probability γ > 0. It can

be shown that the noise term ε then has to be smaller than
(
3
2

)−n
. But as the size

of the system increases stochastic stability will capture the dynamics adequately
only for extremely small noise. Even more worrisome, the waiting time to reach
the stable state n+ 2 becomes unrealistically large for such small ε.
Stochastic stability analysis therefore tends to work best for small-scale stochas-

tic systems, while most evolutionary environments, such as residential neighbor-
hoods, involve many interacting agents. For the preceding example one can in fact
demonstrate that for a fixed noise term ε the process will spend almost all its time
close to the state 0 as the size n of the system increases. The long-run evolution
of the system is completely determined by the biased undisturbed dynamics of the
process.
This insight immediately suggests an alternative technique to characterize sto-

chastic dynamics. Clustering looks at the dynamics of a system as its size n
increases and therefore takes into account both the disturbed and the undisturbed
dynamics of a model. This makes clustering a more robust equilibrium concept
than stochastic stability for systems with many agents.
The balance of the paper is organized as follows. In the next section I lay out

a general model for a residential segregation process and introduce the notion of
clustering. The new technique is then applied to streets in section 3 and to inner-
cities in section 4, in order to characterize the long-run equilibria of the model and
to find bounds on the waiting time to reach those equilibria. In section 5 I discuss
how my theory can help us to understand the formation of ghettos at the beginning
of the 20th century in the US. I also present evidence of “avenue waves” from
Chicago and describe in detail Harlem’s transformation from a white upper-class
neighborhood into a black ghetto between 1900 and 1930. The relationship between
stochastic stability and clustering is explored in section 6 using the waiting time
terminology introduced by Ellison (1999). In order to demonstrate the usefulness

6The basin of attraction is defined with respect to the undisturbed dynamics, i.e. ε = 0.
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of clustering as a general technique I revisit a well-known application of stochastic
stability by Ellison (1993) and illustrate how clustering can make the predictions
of Ellison’s paper robust to changes in the dynamics.

2 A Framework for Analyzing Segregation

This section introduces a simple evolutionary model of segregation and the notion
of clustering which will be used to analyze the medium and long-run behavior of the
resulting Markov process. In the case of bounded neighborhoods my model reduces
to Schelling’s (1972) tipping model, and I demonstrate why this setup describes
the dynamics of segregation insufficiently. Although the tipping model allows for
both an all-white and an all-black ghetto equilibrium, the process remains locked
into basins of attraction around those equilibria. The medium-run dynamics is
solely determined by the initial conditions, and there is no mechanism which gives
rise to ghettos within a realistic time frame.

2.1 The Basic Setup

A residential area of size n consists of n residents R = {z1, z2, ..., zn}. They form the
vertices of a connected graphG defined through a symmetric neighborhood relation
G ⊂ R×R.7 Each resident z has a natural neighborhood N (z) = {z′ |(z, z′) ∈ G}.
I restrict attention to three possible residential geometries. Bounded neighborhoods
GB (n) have a complete graph G such that individual neighborhoods coincide with
the entire residential area. There are also two local geometries with easy intuitive
representations: one-dimensional streets GS (n) and two-dimensional inner-city ar-
eas GC (n). On a street, residents are located on a circle with each agent having
two neighbors on both sides. An inner-city area consists of a torus of size

√
n×
√
n

such that each resident has four neighbors. Streets have the lowest possible con-
nectivity of a regular connected graph, while bounded neighborhoods have the
highest. Inner-cities take an intermediate position.8 Both streets and inner-cities
have intuitively related graphs of higher order if we allow for individual neigh-
borhoods of radius r > 1 in the standard Euclidean norm. These geometries are
denoted with GrS (n) and G

r
C (n) respectively. Figure 2 shows both a street and an

7The graph is connected if any two residents are connected through a transitive chain of
neighborhood relationships.
8The connectivity C (G) of a finite graph G is defined as the lowest upper bound for the min-

imum length path connecting any two residents on the graph, i.e. C (G) = maxzi,zj∈R d (zi, zj)
where d (zi, zj) denotes the length of the minimum length path connecting zi and zj. The smaller
C (G) the better connected the graph. Bounded neighborhoods have C (GB) = 1, a street GS (n)

has connectivity
[
n+1
2

]
and the inner city GC (n) has an intermediate connectivity of 2

[√
n
2

]
.
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Figure 2: Street and inner-city geometries with individual neighborhoods of radius
2

inner-city with respective neighborhoods of radius 2.9 Note that for a large radius
r the individual neighborhood of a resident comprises the entire residential area,
and one again obtains the bounded neighborhood geometry.
The residential area is populated by two ethnic groups whom I refer to as

’blacks’ and ’whites’ throughout the paper. At each point in time the pattern of
settlement is defined by a configuration η : Gi → {0, 1}, where the values 0 and
1 denote a white and black resident respectively.10 The residential area allows a
total of 2n configurations which form the configuration set Z. A cluster in some
configuration η is defined as a connected set of residents of the same ethnic group.11

All residents in the area are assumed to have an area-specific socio-economic
status. Time is continuous, and agents get ’lucky’ according to an i.i.d. Poisson
process at rate 1. ’Lucky’ agents immediately become a member of the next highest
socio-economic group and move out of the area because they can afford better
housing. Vacant flats are occupied by newcomers from a large pool of prospective
tenants. A share λ of those is white and a share 1− λ is black.
A (small) share ε of prospective tenants are completely tolerant in the sense that

they do not care about the ethnic composition of their individual neighborhoods.
The remaining share 1 − ε of prospective tenants have mild ethnic preferences
because they are afraid of isolation at their new apartments. All whites and all
blacks have identical, group-specific tolerance levels αw and αb respectively. The
tolerance level marks the maximum share of neighbors of a different ethnicity a

9Looking at a circle and a torus respectively avoids the need to specify boundary conditions.
All results hold for open linear streets and rectangular inner-cities, as well, once the decision
rules for residents at the boundary are suitably adapted.
10I generally treat a lattice cell as a single resident. For densely populated cities such as New
York City, however, it might be more adequate to interpret lattice cells as entire apartment
blocks, as the owners of these buildings usually did not mix tenants of different racial groups.
11Connectedness is defined with respect to simple streets and inner-city geometries with radius
of interaction r = 1.
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prospective tenant is prepared to accept. I assume that 1
2
≤ αi < 1, i.e. agents

are generally happy to live in integrated areas where both ethnic groups share the
neighborhood equally.12 I assume throughout the paper that the minority group
(’blacks’) is more tolerant than the majority group (’whites’), i.e. αw ≤ αb.13

The housing market operates as follows. All prospective tenants have a basic
willingness to pay WTP , which depends only on their socio-economic status and
is equal for both whites and blacks. If a resident feels isolated, however, her
willingness to pay decreases to WTP −D for some D > 0. An apartment is then
allocated amongst the highest bidders through randomization. One can derive a
switching function which denotes the probability that the color of a tenant switches
conditional on the previous tenant having moved out. I denote the share of black
neighbors of a resident z in configuration η with x (η, z) and the share of white
neighbors with y (η, z). The probability of a color switch gw if the previous tenant
was white then becomes:

gεw (x (η, z)) =




(1−λ)ε
(1−λ)ε+λ for x < 1− αb
1− λ for 1− αb ≤ x ≤ αw
1−λ
1−λ+ελ for x > αw

(1)

Analogously, the probability gb for a switch from a black to a white tenant is:

gεb (y (η, z)) =




λε
λε+1−λ for y < 1− αw
λ for 1− αw ≤ y ≤ αb
λ

λ+ε(1−λ) for y > αb

(2)

Figure 3 illustrates the typical shape of the resulting switching functions in terms
of the share of neighbors of the opposite color.
The evolution of the residential neighborhood can now be described by a con-

tinuous time Markov chain ηt on the space of configurations Z where η0 is the
initial configuration which is set by some historical accident.
Remarks on the Setup: 1. Which of the two local geometries approximates

real-life residential areas best? It is natural to think of geographic entities, such
as residential neighborhoods, in a two-dimensional setting. On the other hand,
’streets’ might capture the neighborhood interaction on large avenues more appro-
priately.14

12If αi <
1
2 for both groups, segregation would be the socially efficient outcome.

13Empirical studies such as the General Society Survey reveal that whites discriminate more
strongly than blacks (see Cutler, Glaeser and Vigdor (1997)).
14Residents on such major roads certainly had some preferences concerning the racial compo-
sition of side streets, but they presumably put greater weight on the residents living along the
avenue: a majority of shops, public transport and institutions such as churches would be located
along the avenues, making social interaction with residents there more likely.
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agents at ε = 0 and the share of whites in society at λ = 0.5

2. Prospective tenants in my model behave only in a boundedly rational man-
ner and just take the contemporaneous ethnic balance of a neighborhood into
account. Forward-looking rational agents with a positive discount factor should
anticipate the probabilistic evolution of a residential area and possibly take into
account additional available information such as the total ethnic balance of the
area they move into. The computational requirements on prospective tenants be-
come enormous, however, even for moderately large residential areas. I therefore
adopt the myopia hypothesis which is commonly employed in evolutionary game
theory (see, for example, Kandori, Mailath and Rob (1993) and Young (1993)) and
allows me to concentrate my analysis on the dynamics of segregation.
3. Fear of isolation gives rise to an S-shaped frequency distribution of tolerance

levels within each ethnic group. The empirical evidence suggests that the toler-
ance distribution is indeed highly non-linear and S-shaped (see Galster (1990)).
The results of this paper carry through for more general tolerance distributions
and richer models of the housing market as long as the tails of the reduced form
switching functions are flat, i.e. whites (blacks) will mainly seek out white (black)
neighborhoods.
4. Discrimination in this model operates only through destination selectivity

of prospective tenants in the housing market. Schelling’s (1972) original tipping
model also allows agents to leave a neighborhood at an increased rate if they feel
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isolated.15 This second channel can be easily incorporated in my model without
changing the qualitative predictions. Destination selectivity, however, seems to
be the more important channel, as moving costs are presumably higher than the
search cost which is associated with excluding some apartments from further con-
sideration. Furthermore, my main application of the model concerns the formation
of ghettos at the turn of the century when city growth was rapid and the residential
turnover rate was high.
5. The model can be regarded as a partial equilibrium building block for a

richer general equilibrium model of a growing city consisting of many residen-
tial areas of different socio-economic status. Historically, the frantic expansion of
Northern cities in the US at the turn of the century was accompanied by a chain of
succession and invasion. As wealthy middle class citizens in New York or Chicago
gradually abandoned the city for the new suburbs, they were replaced by successful
immigrants who had left behind their lower class origins. Their place, in return,
was occupied by new immigrants and migrants from rural areas.

2.2 Characterizing the Stochastic Dynamics through Clus-
tering

It is easy to see that the model has a unique ergodic distribution µε∞ over the set of
configurations Z which describes the long-run behavior of the system.16 Therefore
the long-run behavior of the system is independent of the initial conditions. But
this observation is of little interest unless we find a way to classify the ergodic
distribution. Will the process spend most of its time around segregation config-
urations or around mixed configurations? How does the equilibrium depend on
parameters of the model, i.e. the geometry, the tolerance levels of both groups and
the balance in the housing market?
The standard technique for classifying the ergodic distribution µε∞ is stochastic

stability analysis, which was developed by Young (1993) and Kandori, Mailath and
Rob (1993). All results from this literature can be applied to my model if the small
share ε of completely tolerant residents is interpreted as ’noise’. A configuration η
is then called stochastically stable if limε→0 µ

ε
∞ > 0 for some fixed geometry Gi (n)

(i = B, S, C).
I will demonstrate in section 6 that stochastic stability explains the long-run

dynamics of the residential neighborhood process very poorly for large-scale res-

15In his sketch of a local tipping model Schelling (1978) omits destination selectivity altogether.
16Appendix A shows how to associate a Markov chain with the continuous time Markov pro-
cess. The transition matrix P ε of that chain is regular as (P ε)

n
has no non-zero entries - each

configuration of the geometry can be reached after n steps with positive probability (Kemeny and
Snell 1960, Theorem 4.1.2). Therefore the process is ergodic (Kemeny and Snell 1960, Theorem
4.1.4).
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idential neighborhoods. The intuition for this failure will be the same as for the
example I gave in the introduction. Stochastic stability describes the process well
only for extremely small ε. This requirement is troubling because the share of tol-
erant residents might be low but is certainly not negligible. Even more worrisome
is the effect that such a small ’noise’ parameter has on the waiting time before the
stochastically stable configuration is reached for the first time. For large neigh-
borhoods, convergence will be so unrealistically slow that the analysis will tell us
nothing about the medium-run behavior of the process.
This insight quite naturally suggests an alternative to stochastic stability which

fixes the noise term ε and instead considers very large residential areas, i.e. lets
n→∞.17 As the main parameter of interest is the ethnic balance in the residential
area, I formally define the concept of clustering for the long-run share X̃εn of black
residents which is a scalar random variable.

Definition 1 A sequence of random variables
{
X̃n

}
on the interval [0, 1] is said

to cluster over the set I ⊂ [0, 1] if P
(
X̃n ∈ I

)
→ 1 as n→∞.

For example, we can interpret clustering of the residential neighborhood process
on a street GS (n) around a black share close to 1 in the sense that large streets
will become black ghettos in the long run.
Although clustering captures the long-run behavior of the process well, it does

not tell us how fast a neighborhood I is reached over which the process clusters.
Waiting times are a very useful measure for the speed of convergence to equilibrium,
as was first emphasized by Ellison (1993) in the context of stochastic stability.
With respect to clustering, the relevant measure is the maximum waiting time
W (n, I) in which the process reaches I for the first time starting from any initial
configuration:

W (n, I) = max
ζ∈Z
[E (min t |X (ηt) ∈ I and η0 = ζ )] (3)

X (η) here denotes the share of black residents in configuration η. Unless that
waiting time remains bounded as n increases, the evolution of the process will be
determined by the initial conditions rather than the long-run equilibrium.

2.3 Schelling’s Tipping Model as a Benchmark

It is instructive to start the analysis of the residential neighborhood process for
bounded neighborhoods GB (n) because the model becomes a variant of Schelling’s
(1972) well-known tipping model. The entire intuition for the behavior of the

17The type of geometry is assumed to be fixed when taking the limit.
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process on large bounded neighborhoods can be derived from the deterministic
approximation of the change in the share of black residents x (t):

dx

dt
= (1− x) gεw (x)− xg

ε
b (1− x) (4)

Figure 4 shows the graph of dx
dt
and illustrates that the deterministic approxi-

mation of the process has, in general, multiple stable steady state equilibria:
two segregation equilibria x1 =

(1−λ)ε
(1−λ)ε+λ

and x3 =
1−λ
1−λ+λε

, and possibly one in-

tegrated equilibrium x2 = 1 − λ.18 The corresponding basins of attraction are
B1 = [0, 1− αb),B2 = (1− αb, αw), and B3 = (αw, 1], respectively.
The evolution of the deterministic approximation to the process is therefore

entirely determined by the initial conditions, which is a highly unsatisfactory fea-
ture of bounded neighborhoods. The choice of the initial share of black residents
x0 is indeterminate without making arbitrary assumptions about the history of
the process. While the model does well in explaining the persistence of ghettos, it
suggests no mechanism for moving between the steady states.
The intuition which we gained from the deterministic approximation continues

to hold for the stochastic model, as the next theorem shows. The stochastic drift
will select one of the steady states in the long run, depending on the parameter
values. For simplicity I restrict attention to the most interesting case where blacks
dominate the housing market. In this case the residential area will turn into a black
ghetto, and the process clusters around x3 unless there are too many completely
tolerant agents in the housing market such that the process clusters around the

18I assume that the share of completely tolerant residents ε is sufficiently small such that
x1 < 1 − αb and x3 > αw. The integrated equilibrium might not exist if the housing market is
sufficiently unbalanced, i.e. λ > αb or λ < 1− αw.
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Table 1: Comparison of waiting times W (n, I) for reaching the neighborhood
I = [0.97, 1] of the ghetto steady state x3 = 0.99 (αb =

3
4
, αw =

2
3
, ε = 0.05,

λ = 0.2)

Size of area n=100 n=200 n=300 n=400
Waiting time W (n, I) 21 137 627 4908
Estimated standard errors for the waiting times are 10% or less.

integrated steady state x2 = 1− λ. However, this characterization of the long-run
behavior of the process is meaningless for its medium-run evolution. The process
is tightly ’locked’ in the basins of attraction around the three steady states, as
the second part of the theorem shows. For all practical purposes the behavior of
the process is indeed determined by the initial conditions. Therefore, the tipping
model can not explain the formation of ghettos.

Theorem 1 Consider a residential neighborhood process on GB (n) with initial
share of black residents x0 in one the three basins of attraction Bi (i = 1, 2, 3).
Blacks dominate the housing market, i.e. λ < 1

2
.

1. (Long-run behavior) The process clusters around any neighborhood of the
ghetto steady state x3 if

ε1−αw

1−λ+λε
< 1, i.e. the share of completely tolerant

apartment seekers is sufficiently small (and x2 exists). Otherwise, the process
clusters around the integrated steady state x2 = 1− λ.

2. (Medium-run behavior) The process reaches a δ-neighborhood of the steady
state xi before it can leave the basin of attraction with probability approaching
1 as n→∞. The conditional waiting time for this event is bounded above by
some finite Wδ. Moreover, the waiting time to reach a neighborhood of the
steady state chosen in the long-run is of the order A (x0)

n where A (x0) > 1
if the process starts outside the basin of attraction of that steady state.19

Proof: see appendix C

Example: A little numerical example illustrates the irrelevance of the long-
run equilibrium for the medium-run behavior of the process. I consider the case
where the black and white tolerance levels are αb =

3
4
and αw =

2
3
respectively,

and 5 percent of all agents are completely tolerant (ε = 0.05). I assume that

19I assume that 1−αw < λ < αb such that a bounded neighborhood can stay integrated around
x2 in the medium run. If λ < 1−αw the process will reach its long-run equilibrium in finite time
for x0 > 1 − αb. If λ > αb the process will reach its long-run equilibrium in finite time only for
x0 > αw.
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the neighborhood has initially been in an all-white steady state (λ = 1) when an
influx of blacks into the housing market occurs, causing the share of whites in the
market to fall to 20 percent. The all white steady state and the all black steady
states are x1 = 0.17 and x3 = 0.99 respectively; there is no integrated steady state.
Theorem 1 tells us that under these circumstances the process clusters around any
neighborhood I of the ghetto steady state, say I = [0.97, 1]. How long will it take
until the bounded neighborhood has turned into a ghetto? Table 1 shows the results
from a simulation for neighborhoods of various sizes.20 The data nicely confirm
the theory, as the waiting times increase rapidly with the size n of the bounded
neighborhood. In the medium run, the behavior of the process on even moderately
large residential areas is therefore entirely determined by the fact that the process
started from an all-white configuration. As a response to the dominance of blacks
in the housing market their share in the area will increase rapidly to about 17
percent, i.e. the steady state value x1. The process will then oscillate around
this meta equilibrium, but is unlikely to escape its basin of attraction within any
realistic time frame.

3 Rapid Segregation and “Avenue Waves” on

Streets

The previous section demonstrated that the original tipping model exhibits stasis
around its steady states. It is noteworthy that the persistence of the all-white and
all-black segregation steady states is preference based: the apartment seekers of
the minority group feel isolated and avoid the residential area. In particular, an
increased presence of blacks in the housing market does not trigger the transfor-
mation of the area into a ghetto in the medium run.
On streets, on the other hand, the residential neighborhood process behaves in

a radically different manner because it gives a role to the balance in the housing
market. Black (white) segregation on streets is upheld in the long run because the
share of blacks (whites) in the housing market exceeds a critical level. Moreover,
this mechanism lets the process reach its long-run equilibrium rapidly. In contrast
to the standard tipping model, streets do not behave differently in the medium run
and in the long run. Streets, therefore, provide a mechanism for moving between
all-white and all-black equilibria through changes in the composition of the housing
market.
I begin my analysis with a heuristic argument in order to illustrate why streets

become ghettos in the long run if blacks sufficiently dominate the housing market.
The intuition is cleanest for the case where the tolerance levels are close to 1

2
. For

20Note that the maximum waiting time W (n, I) coincides in this case with the waiting time
of reaching I starting from the all-white configuration.

14



A

B

C

D

Figure 5: Black ghetto on a street Gr=1S (n) with a single white cluster: if residents
A to D move, members of both racial groups are equally interested in vacant
apartments.

simplicity I only look at simple streets Gr=1S (n), although the argument is readily
generalized to higher-order streets. A ghetto on such a street will occasionally
face invasion by small white clusters of completely tolerant apartment seekers, as
illustrated in figure 5. Under the assumption that the share ε of tolerant agents
is small, vacant apartments inside of black and white clusters are almost always
taken only by black and white residents respectively due to the assumption on the
tolerance levels. However, if apartments at the boundary of the cluster become
vacant (such as A or D) apartment seekers from both ethnic groups will be inter-
ested in them. The boundaries of the black cluster therefore move according to
a random walk with absorption (the process ends if one of the clusters vanishes).
The drift of this random walk is solely determined by the composition of the hous-
ing market, i.e. λ. As blacks dominate the housing market the white cluster is
likely to shrink rather than grow.
We can now ask the question, what would happen to this cluster if the circle

was infinite and it could not interact with other random white clusters? Standard
theory tells us that the cluster would die out with probability 1, and its expected
maximum length would be finite and determined by the negative drift only.21 From
this observation we can conclude that white clusters form and die independently
from one another to a first approximation, as long as the share ε of completely
tolerant agents is small and the size n of the street is large. Therefore, the equi-

21These are standard results from random walk theory (Stirzaker 1994, section 5.6).
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Figure 6: Transition rates for the length of a white cluster originating at a single
apartment z on the street Gr=1S (n)

librium share of white residents in the ghetto can be derived by calculating the
average length of white clusters which originate from some fixed apartment z on
the street.22 The length of such a cluster forms a random walk with transitions
rates as indicated in figure 6. The probability x that the originating apartment is
black then becomes:23

x =

(
1 + ε

λ (2λ+ 1)

1− λ
+ ε

2λ2

(1− 2λ) (1− λ)

)−1
(5)

From formula 5 one can immediately deduce that if the share of blacks in the
housing market is greater than 50 percent and the share of completely tolerant
agents is small the street will become a ghetto.
The next theorem makes this heuristic argument precise and generalizes it for

the case where the tolerance levels are not necessarily close to 1
2
. If the share of

whites in the market falls below some critical level λ̂, the residential neighborhood
process on a street will turn into a ghetto in the long run and cluster around a
black share of x = 1. On the other hand, if the share of whites exceeds some
critical level λ̃ the process clusters around the all-white equilibrium.

Theorem 2 Given is a street GrS (n) with group tolerance levels αw and αb. Then

there exist critical values 0 < λ̂ (r, αw, αb) ≤ λ̃ (r, αw, αb) < 1 such that the follow-
ing holds.

1. If blacks sufficiently dominate the housing market (λ < λ̂) the street be-
comes a black ghetto in the long run, i.e. the process clusters on the interval
[x∗b (ε) , 1] with limε→0 x

∗
b (ε) = 1.

2. If whites sufficiently dominate the housing market (λ > λ̃) the street be-
comes a white ghetto in the long run, i.e. the process clusters on the interval
[0, x∗w (ε)] with limε→0 x

∗
w (ε) = 0.

22I invoke the law of large numbers here.
23The expression for x is a first order approximation in ε.
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Proof: see section 3.2

The description of the long-run equilibrium of the process is, of course, only
relevant if it is reached reasonably quickly. Fortunately, this is the case on streets,
as the next lemma shows. The intuition can be again derived for a simple street
Gr=1S (n) where blacks dominate the housing market. I have demonstrated how
white clusters tend to shrink rather than grow in such an environment. The ar-
gument can be flipped around in the sense that black clusters have to grow rather
than shrink. Assume that the street is initially all-white. It is useful to divide the
street up into k segments of some fixed size N . On each segment black clusters
form after a waiting time of about B

Nε
. Such clusters can subsequently expand with

positive drift. The problem is complicated by the fact that black clusters can be
broken up by randomly forming white clusters. Ignoring this issue for the moment
the black cluster would take over the neighborhood after some waiting time of the
order AN (see, for example, lemma 5 in appendix B). The total waiting time until
a segment becomes a ghetto is therefore of the order B

Nε
+AN . If the segments are

large enough, each of them stays mostly black subsequently due to theorem 2. As
n→ ∞ (i.e. k →∞) one can invoke a form of the central limit theorem in order
to show that the waiting time W (n, I) to reach some neighborhood I of the black
ghetto equilibrium is of the order O (1).

Lemma 1 Consider a street GrS (n) and assume that the share of whites in the

housing market falls below the critical level λ̂. If ε is sufficiently small the waiting
time until the share of blacks reaches exceeds 1−δ satisfiesW (n, [1− δ, 1]) = O (1).
An analogous result holds if the share of whites exceeds the critical level λ̃.

Proof: see appendix F

It should be pointed out that the residential neighborhood process responds
fast to changes in the composition of the housing market in both directions. While
a street can quickly turn into a black ghetto, this development can reverse just
as rapidly as soon as whites dominate the housing market again. In some sense,
streets do too well in explaining the formation of black ghettos: if the composition
of the housing market is highly volatile we should observe “avenue waves” instead
of highly persistent ghettos. In section 5 I provide evidence for such waves in the
case of Chicago. To summarize, while Schelling’s tipping model lacks a mechanism
for ghetto formation but does well in terms of ghetto persistence the reverse is
true for streets. One, therefore, would like a ’hybrid’ geometry between streets
and bounded neighborhoods which can explain both phenomena. I argue in the
next section that inner-cities provide such an environment.
The remainder of this section is devoted to some Monte Carlo simulations,

which illustrate the fast response of streets to changes in the housing market, and
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to the proof of theorem 2. I discuss the steps of the proof in some detail because it
introduces the coupling technique, a highly useful device for understanding Markov
processes on a lattice.

3.1 Simulation Results on Critical Behavior and Speed of

Adjustment

Theorem 2 and lemma 1 characterize the long-run and medium-run behavior of
the residential neighborhood process on streets qualitatively. They do not permit
us to numerically calculate the critical imbalance in the housing market which
gives rise to ghettos, or the waiting time until convergence.24 Simulations are
therefore essential to assess the relevance of the theory. First, are the critical
imbalances realistic, i.e. sufficiently bounded away from {0, 1}? Second, what
does fast convergence in the medium run mean? Time is measured in my model
in terms of tenant generations. Waiting times W (n, I) of the order of 100, for
example, translate into centuries when measured in real time.
The first round of simulations is aimed at finding the critical imbalance in the

housing market such that a street becomes a ghetto in the long run. Figure 7
shows the long-run share of black residents depending on the share λ of whites in
the housing market for streets with radius of interaction r = 2 and r = 3. The
critical imbalance of the housing market is encouragingly close to 50 percent when
both groups are equally tolerant such that λ̂ = 1− λ̃. For tolerance levels close to
1
2
the street turns into a black ghetto if blacks control more than 50 percent of the
market as expected. But even if both groups can tolerate having up to 75 percent
(80 percent) of their neighbors be of a different ethnicity, the share of blacks only
has to exceed 70 percent (80 percent) for a black ghetto to arise. If blacks are
strictly more tolerant than whites the critical values shift accordingly. A street
with radius 2, for example, and tolerance levels of αw =

1
2
and αb =

3
4
will turn

into a black ghetto as soon as the share of blacks exceeds 30 percent. Nevertheless,
even though blacks are far more tolerant than whites, a black ghetto will dissolve
again as soon as at least 80 percent of all apartment seekers are white.
Next, I look at the medium-run evolution of the residential neighborhood pro-

cess in a setup where 5 percent of agents are completely tolerant, blacks constitute
80 percent of the housing market and the radius of interaction is again r = 2 or
r = 3.25 For the simulations in figure 8 I assume that both groups have equal
tolerance levels which can only slow down the transformation of the area into a
black ghetto, as compared to the case where whites are strictly less tolerant than

24An exception is the case where the tolerance levels of both ethnic groups are close to 12 . The

heuristic argument of the previous section established that λ̂ = λ̃ = 1
2 .

25The share λ = 0.2 has been chosen such that λ < λ̂ in all cases.
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Table 2: Comparison of waiting times W (n, [0.9, 1]) until more than 90 percent of
residents are black starting from an all white neighborhood on a street Gr=2S (n)
with λ = 0.2, αb =

3
4
, αw =

2
3
.

Expected Wait W (n, [0.9, 1])

ε = 0.005 ε = 0.01 ε = 0.02 ε = 0.05
n=100 9.32 7.16 5.84 4.86
n=1000 10.30 7.64 5.98 4.98
n=10000 10.02 7.84 6.00 5.00
n=20000 10.00 7.90 6.00 5.00
Estimated standard errors for the waiting times are 5% or less.

blacks.26 The speed in which the all-white area is transformed into a black ghetto
is impressive. It takes less than 5 tenant generations until more than 75 percent
of the street has become black if blacks can tolerate having whites be two thirds
or more of their neighbors. If blacks are less tolerant they will still populate about
50 percent of the area after 5 tenant generations.
How does the speed of convergence depend on the share ε of tolerant agents

and the size n of the street? Table 2 lists the expected waiting times W (n, [0.9, 1])
until 90 percent of all residents on the street are black for the geometry Gr=2S (n)
and ε varying between 0.5 percent and 5 percent. The results indicate that the
waiting time until convergence does not increase with the size of the street and
depends only weakly on the share of tolerant agents.27 Because of lemma 1, one
would expect the waiting time not to depend on the size of street for large n.
The simulations demonstrate, however, that the lemma holds even on fairly small
streets.
Example: (cont. from section 2.3) By repeating the numerical exercise for

streets one can directly compare the different behavior of the residential neighbor-
hood process on bounded neighborhoods and on streets. I again assume that the
black and white tolerance levels are αb =

3
4
and αw =

2
3
respectively, and that

5 percent of all agents are completely tolerant. The street is initially all-white
when an influx of blacks into the market occurs (λ = 0.2). Table 3 reveals that
convergence is now rapid even though the street is much larger than the bounded

26The less tolerant whites are, the easier it is for black clusters to expand on the street.
27Note that if ε = 0.005 a vacant apartment with only white neighbors will switch color with
a small probability of 2 percent. Still, it will only take 10 generations until 90 percent of all
residents are black.
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Figure 7: Dependence of long-run share of black residents on the share λ of whites
in the housing market for streets with radius of interaction r = 2 (top) and r = 3
(bottom).
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The size of the street has been set at n = 8100 and the share of tolerant agents at ε = 0.01. The

’long-run share of blacks’ was defined as the share of blacks at time t = 10, 000. In all cases the

street started off from a random configuration with 50 percent of residents being black.
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Figure 8: Evolution of the share of black residents on a street Gr=2S (8100) (top)
and Gr=3S (8100) (bottom). The process starts from an all-white neighborhood
(λ = 0.2, ε = 0.05) whenever blacks and whites are equally tolerant, and from an
all black neighborhood (λ = 0.8, ε = 0.05) if blacks are strictly more tolerant than
whites.
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Estimated standard errors are 5 percent or less.
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Table 3: Comparison of waiting times W (n, [0.97, 1]) until 97 percent of all agents
are black on various streets GrS (5000) (αb =

3
4
, αw =

2
3
, ε = 0.05, λ = 0.2)

Radius of interaction r=2 r=4 r=6 r=8
Waiting time W (n, I) 6.94 7.16 7.68 7.56

Estimated standard errors for the waiting times are 5 percent or less.

neighborhoods I considered in the previous section. The example also illustrates
why the resulting black ghetto lacks persistence on streets. If the balance in the
housing market is reversed (i.e. 80 percent of all apartment seekers are white) the
street Gr=2S (5000) will become 50 percent white within 5 tenant generations and
75 percent white within 10 generations, as the graph in figure 8 (top) illustrates.

3.2 Proof of Theorem 2

The proof utilizes some novel techniques from the theory of interacting particle
system.28 The argument proceeds in three steps. First, I propose a simplified
Markov process σt on the street. Second, I show that the original process ηt and
the simplified process σt can be coupled such that the hypothesis of theorem 2 only
has to be proved for the simpler process σt. This last step is accomplished through
lemma 3. Without loss of generality I restrict attention to the case when streets
become black ghettos i.e. λ < 1

2
.29

The original neighborhood process is difficult to analyze because black clusters
continuously form and break up when tolerant white tenants move into a vacant
apartment. The simpler process σt limits and ’tags’ all potential black clusters.
Intuitively, the new process makes it both harder for new black clusters to form
and easier for existing clusters to break up. The process is therefore biased against
blacks in a monotonic fashion: if ghettos develop in the simplified process they
should certainly develop in the original process, too.
Formally, the process σt is defined as follows. The street is divided up into k

segments of fixed length N such that n = kN .30 Residents move out at rate 1 and
the process starts from an initial configuration σ0 where all residents are white.
The evolution of the process follows the same switching rules as before with the
following qualifications:

1. I assume that a resident regards any neighbors outside his segment as white.

28Liggett (1985) provides a thorough introduction to this branch of probability theory.
29In this section it is no longer assumed that blacks are more tolerant than whites.
30I abstract away from integer constraints. I will take n→∞ and keep N fixed such that the
contribution of a single segment of length less than N will vanish by the law of large numbers.
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This implies that the dynamics of the process within each segment develops
independently from other segments.

2. If a black cluster within the same segment already exists only the (at most
two) adjacent white neighbors of the cluster can switch. This guarantees
that no seeds for new disjointed clusters can be generated.

3. If a cell switches from black to white such that it divides a cluster up into
two separate clusters, the smaller one dies.31 Together with the previous
rule, this assumption ensures that at any point in time at most one black
cluster exists within each segment.

These rules completely define the evolution of the process starting from σ0.
In general, coupling is simply a construction of two stochastic processes on

a common probability space - in this case I construct a coupled process (σt, ηt)
such that the two marginals of the process are the original process ηt and its
simpler counterpart σt. In order to be of any interest the two processes cannot
move independently but must be related in some nontrivial way. I define a simple
partial order on the set Z of configurations of the street GS (n) which allows me
to compare the two processes at any point in time:

σ ≤ η if and only if σ (z) ≤ η (z) for all residents z (6)

I assume that both processes start to evolve from the same initial all-white config-
uration η0 = σ0. The next lemma shows that there exists a coupled process (σt, ηt)
such that the original process ’dominates’ the new process monotonically, i.e. the
inequality σt ≤ ηt holds with probability 1 for all t ≥ 0.

Lemma 2 There is a coupling (σt, ηt) such that both marginal processes start to
evolve from the same all-white configuration η0 = σ0 and σt ≤ ηt holds with prob-
ability 1 at any point in time.

Proof: see appendix D

One can immediately conclude that E (f (σt)) ≤ E (f (ηt)) for each increasing func-
tion f on the space of configurations.32 The share of blacks X (ηt) of the residential
neighborhood process at any time t, then first-order stochastically dominates the

31In the case of a tie I assume that the cluster clockwise to the right of the switching cell dies.
32Note that E (f (σt)) =

∫
f (σt) d (σt, ηt) and E (f (ηt)) =

∫
f (ηt) d (σt, ηt) because the cou-

pled process has marginals ηt and σt. By construction σt ≤ ηt with probability 1 and therefore
f (σt) ≤ f (ηt) with probability 1. This implies that

∫
f (σt) d (σt, ηt) ≤

∫
f (ηt) d (σt, ηt).

23



share of blacks X (σt) of the simplified process.
33 Therefore, the claim in theorem

2 only has to be established for the simplified process σt.
I exploit the observation that each segment of the street develops independently

in the simplified process. Inside the initially all-white segment, a black cluster of
length [2r (1− αb)]

+ will eventually form, which is the minimum length for the
cluster to be stable under the undisturbed dynamics (ε = 0).34 Black house-seekers
now show interest in the apartments surrounding this minimally stable cluster and
the ends will start to move like a random walk with drift under the undisturbed
dynamics. The drift is solely determined by the balance of the housing market.
I denote the expected long-run share of blacks in a segment of length N with

Eb (ε). As n → ∞ the number of segments becomes arbitrarily large, and by the
law of large numbers and lemma 2 we can conclude for the long-run share X̃n of

blacks in the original process that P
(
X̃n ∈ (2Eb (ε)− 1, 1]

)
→ 1. In order to finish

the proof of theorem 2, the next lemma shows that the expected share of blacks
in a segment can get arbitrarily close to 1 for sufficiently small ε and large N .

Lemma 3 There is an upper bound λ̂ (r, αw, αb) > 0 such that for each λ < λ̂ and
each δ > 0 there is an ε such that for all ε < ε there is some N such that the
expected share of blacks Eb (ε) in the segment of length N fulfills Eb (ε) > 1− δ.

Proof: see appendix E

The intuition for lemma 3 can be most easily outlined by using the language of
stochastic stability analysis (see Kandori, Mailath and Rob (1993) and Young
(1993)). If the share of blacks in the housing market is sufficiently large, the single
black cluster living in a large segment of length N always exhibits a positive drift,
i.e. is more likely to grow rather than to shrink. The process has essentially two
’limit sets’ under the undisturbed dynamics: if the share of blacks is x = 0 the
process can leave the basin of attraction only after a minimally stable cluster of
size b has formed. On the other hand, if the share of blacks lies in a neighborhood
I of x = 1 the process will escape that neighborhood only after a huge waiting time
because of the positive drift pushing the process towards x = 1. Therefore both
the shares x = 0 and x ∈ I form ’limit sets’ of the undisturbed dynamics. For any
intermediate shares the dynamics will push the process rapidly into I, e.g. there
are no further limit sets. It takes b ’mutations’ until the basin of attraction of the
limit set x = 0 can be left. The ’limit set’ I can only be exited through a sequence
of tolerant whites who move to vacant apartments inside the single black cluster.

33For a proof, define the following increasing function fx0 indexed by each possible share of
blacks: fx0 (η) is 0 if the share X (η) of blacks in the configuration η is below x0 and equals X (η)
otherwise.
34With [x]+ I denote the smallest integer which is greater than or equal to x.
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Each such ’mutation’ cuts the length of the black cluster by at most half. Even
after b + 1 consecutive mutations its length will still be approximately 2−(b+1)N
and the undisturbed dynamics will push the process back into the ’limit set’ I.
It therefore takes fewer mutations to reach I than to leave I and we expect the
process to spend most of its time inside I.

4 Rapid Segregation and Ghetto Persistence in

Inner-City Areas

Ghettos can develop rapidly on streets in response to shifts in the housing market,
as the previous section demonstrated. This mechanism overcomes the stasis in
Schelling’s (1972) original tipping model where the transition from an all-white
steady state to a black ghetto does not occur within a realistic time frame even
when the bounded neighborhood has only moderate size. However, the effect works
in both directions, and periodic changes in the composition of the housing market
give rise to “avenue waves”. In order to reconcile the observed persistence of black
ghettos in US cities with the dynamics of the model on streets one has to assume
that African Americans have dominated the low-income housing market for the
last 100 years. The data does not support this assertion because the migration of
blacks to the cities has leveled off while other ethnic minorities (notably Mexican
Americans) have grown at a far greater rate in recent decades. In the light of
this evidence how can we explain the continued persistence of black ghettos even
though blacks face far more competition in the housing market?
In an ’ideal’ model the mechanism that gives rise to ghettos should be uni-

directional, i.e. ghettos form rapidly but break up slowly. Inner-city areas can
provide exactly such an environment if blacks are sufficiently more tolerant than
whites. The following assumption on the tolerance levels of blacks and whites
ensures that inner-cities preserve the ghetto formation mechanism of streets while
making segregation persistent as on bounded neighborhoods.

Assumption 1 Blacks can tolerate whites constituting 75 percent or more of their
neighbors (αb ≥

3
4
), while whites can only tolerate blacks making up slightly more

than 50 percent of their neighbors (αw <
1
2
+ r
m
).35

The assumption will hold for the rest of this section.
Just as on streets, randomly forming black clusters can expand, quickly take

over the inner-city area and therefore give rise to ghettos as long as blacks domi-
nate the housing market sufficiently. If whites subsequently make up the majority

35The size of an individual neighborhood on the inner-city area GrC (n) is m, i.e. |N (z)| = m.
If the radius of interaction is r = 1 (r = 2) we have m = 4 (m = 12) and whites can tolerate at
most two (seven) black neighbors.
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in the housing market, however, random white clusters are hindered in their ex-
pansion. The two-dimensional geometry adds a ’geometric’ drift that lets small
white clusters shrink. This effect can be strong enough to completely counteract
the pressure from the housing market which induces white clusters to expand on
streets.

4.1 Rapid Formation of Black Ghettos in Inner-Cities

It can be easily checked that a black square cluster of size (r + 1) × (r + 1) can
expand under the undisturbed dynamics, i.e. it can take over the inner-city area
with positive probability even if there are no tolerant black house-seekers (ε = 0).36

This observation essentially guarantees that the inner-city will turn into a black
ghetto, both in the medium and in the long run, if blacks dominate the housing
market.
The formal proof of this claim exploits the results of the previous section by

breaking the inner-city up into ’stripes’ of width r+1, shown in figure 9. Although
a stable (r + 1)× (r + 1) cluster can expand in all four directions in an inner-city,
the ghetto formation mechanism will work even if it could only expand in East/
West direction. Each stripe will then behave very much like a street: stable clusters
of length r + 1 form and take over the stripe within a waiting time of order O (1)
if blacks dominate the housing market. Moreover, the process will cluster around
a black share of x = 1 on each segment and, hence, on the entire inner-city area.
The proof of the next theorem goes through this reasoning in greater detail.

Theorem 3 Given is an inner-city area GrC (n) with group tolerance levels αw and

αb satisfying assumption 1. Then there exists some critical value 0 < λ̂ (r, αw, αb) <
1 such that the following holds when blacks dominate the housing market sufficiently
(λ < λ̂).

1. The inner-city becomes a black ghetto in the long run, i.e. the process clusters
on the interval [x∗b (ε) , 1] with limε→0 x

∗
b (ε) = 1.

2. If the share ε of tolerant agents is sufficiently small the waiting time until
the share of blacks exceeds 1− δ satisfies W (n, [1− δ, 1]) = O (1).

Proof: The proof is easiest outlined for the case r = 1. The inner-city area is
’sliced’ up into ’stripes’ of length N and width r+1 = 2 (see figure 9). As in
section 3.2 I construct a simplified process σt which evolves independently on
each stripe. The switching rules are translated in a straightforward manner:
they only differ in their emphasis on ’stripes’ instead of ’segments’.

36Recall, that on streets the minimally stable black cluster had length [2r (1− αb)]
+.
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N

r+1

Figure 9: Four N × (r + 1) stripes on an inner-city; the coupled process evolves
independently within each stripe

1. A resident regards any neighbors outside her stripe as white. Therefore,
the dynamics of the process within each stripe develops independently
from other stripes.

2. If a black cluster within a stripe exists, only adjacent white neighbors
can switch to black. A cluster has to ’fill up’ vertically before it can
expand horizontally. This rule implies that the single black cluster al-
ways fills up the full width of the stripe. The length of the single black
cluster on a stripe can therefore be treated in the same way as the size
of the single black cluster on a street segment.

3. If a cell switches from black to white inside the single black cluster the
cluster is cut in two, and the shorter half is eliminated. This ensures
that at any point in time there exists at most one black cluster within
each segment.

Due to assumption 1, a black cluster can only be invaded by whites under
the undisturbed dynamics at its two boundaries. Any apartment inside a
black cluster with a distance of at least r from either boundary has a black
neighborhood share of 1

2
+ r
m
which exceeds the white tolerance level αw.

Apartments at the boundary of the cluster, on the other hand, have a black
neighborhood share of at least 25 percent, which makes them acceptable to all
black house-seekers. Each cluster behaves like a cluster on a street segment:
it can expand under the undisturbed dynamics with a drift depending on
the composition of the housing market, and it can only be broken in half by
rare ε-jumps. The proofs of theorem 2 and lemma 1 can be easily adapted
to establish the existence of λ̂ > 0 and fast convergence. QED
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Figure 10: Evolution of the share of black residents in the inner-city areas
Gr=1C (8100) and Gr=2C (8100). The process starts from an all white neighborhood
with tolerance levels αb =

3
4
and αw =

7
12
(λ = 0.2, ε = 0.05).
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Estimated standard errors are 5 percent or less.

Monte-Carlo simulations confirm that black ghettos form as rapidly in inner-
cities as they do on streets. Figure 10 illustrates the medium-run evolution of the
residential neighborhood process in inner-cities with radius of interaction r = 1
and r = 2 where, again, 5 percent of agents are tolerant and blacks constitute
80 percent of the housing market. In both cases I have set the white and black
tolerance levels at αw =

7
12
and αb =

3
4
such that they just satisfy assumption 1.

Within five tenant generations 90 percent of all residents are black, which is almost
the same waiting time I obtained for streets (see figure 8).

4.2 “Encircling” and Persistence of Ghettos in Inner-Cities

On streets the mechanism that gives rise to ghettos is fully reversible. In response
to an influx of white apartment-seekers, white clusters can form and rapidly break
up the black ghetto. The fact that blacks have a far higher tolerance level than
whites only matters insofar as whites have to dominate the housing market rela-
tively more in order to break up the all-black equilibrium (λ̃ > 1 − λ̂). However,
the residential neighborhood process behaves in a qualitatively different way in
inner-cities. ’Small’ white clusters can nolonger expand under the undisturbed
dynamics.
I consider a white cluster inside a black inner-city ghetto to be ’small’ if it is

“encircled” by black residents, i.e. it does not span the residential area.37 Such

37Formally, I call a cluster of residents “encircled” in an inner-city with radius of interaction r
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Figure 11: Isolated white cluster in an inner-city area Gr=1C (49). The cluster can
be covered by a 5× 5 rectangle (lightly shaded).

a cluster can be covered by a rectangle which is convex in the two-dimensional
geometry. For this reason, each apartment vacated by a black resident along the
boundary of this rectangle has more black than white neighbors. More precisely,
a vacant apartment outside the rectangle has a black neighborhood share of at
least 1

2
+ r
m
which exceeds the tolerance level of whites. Close to the corners of

the rectangle the black share even approaches 75 percent. Therefore, the white
cluster can never expand beyond the rectangle unless tolerant house-seekers move
in along the boundaries. Black house-seekers, on the other hand, can easily invade
the white cluster under the undisturbed dynamics (ε = 0). Obviously, the cluster
has to die out in this environment and can never take over the inner-city regardless
of the balance in the housing market as the following lemma shows.

Lemma 4 Under assumption 1 and without the presence of tolerant agents (ε = 0)
an “encircled” white cluster in an inner-city area GrC (n) will die out almost surely
for any balance in the housing market 0 < λ < 1.

Proof: see appendix G

A white cluster can therefore only survive under the undisturbed dynamics and
lie outside the basin of attraction38 of the black ghetto configuration if it is ’large’
and nolonger encircled. The stable ’large’ cluster shown in figure 12 serves as an
example.

if the cluster can be covered by a rectangle with width and length not exceeding
√
n−1−r. This

ensures that the dynamics of the process along the boundary is not influenced by the finiteness
of the inner-city.
38The basin of attraction D (Ω) of some subset of configurations Ω ⊂ Z is the set of configu-
rations from which the undisturbed process reaches an element of Ω with probability 1.
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Figure 12: ’Large’ non-encircled white cluster in an inner-city with radius of inter-
action r = 1

The minimum number of completely tolerant house-seekers who have to move
into the black ghetto in order to form a non-encircled white cluster grows with√
n. On streets, on the other hand, the minimally stable white cluster has only
size [2r (1− αw)]

+, which does not depend on the size of the street. Intuitively, it
should therefore take longer to leave a black inner-city ghetto than leave a black
street ghetto if the share ε of tolerant agents is small. The next theorem confirms
this insight by comparing the waiting times until the share of white residents
exceeds some share δ < 1 in an inner-city and on a street of the same size n.

Theorem 4 Given are an inner-city area GrC (n) and a street G
r
S (n) of equal size

n. Assumption 1 on the black and white tolerance levels holds, and the share ε of
tolerant agents is small. Then the waiting time until the share of whites exceeds δ

satisfies WC (n, [0, 1− δ]) ≥ ε
−
[ √

n
r+1

]
in the inner-city area and WS (n, [0, 1− δ]) ∼

ε−[2r(1−αw)]
+

on the street.

Proof: see appendix H

The ratio WC(n,[0,1−δ])
WS(n,[0,1−δ])

of the waiting times to leave an inner-city and street
ghetto respectively, can become arbitrarily large if there are few tolerant house-
seekers and the size of the residential area is large. The “encircling phenomenon”
therefore lends persistence to black inner-city ghettos, and makes the ghetto for-
mation process uni-directional. Inner-cities are in some sense a ’hybrid’ geometry
because they combine features of streets and bounded neighborhoods.39

39A comparison of the waiting times to leave a black bounded neighborhood ghetto and an
inner-city ghetto of equal size n also reveal that inner-cities lie somehow ’between’ streets and
bounded neighborhoods. It takes [(n− 1) (1− αw)]

+
’mutations’ to leave the basin of attrac-
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Table 4: Comparison of waiting times W (n, [0, 0.5]) until more than 50 percent
of residents are white starting from a black ghetto on a street and an inner-city
area with individual neighborhoods of equal size m (λ = 0.8, αb =

3
4
, αw =

7
12
,

n = 8100).

Expected Wait (m = 4)

ε = 0.005 0.01 0.015 0.02 0.03 0.04 0.05
Gr=2S (n) 57.4 26.9 17.3 12.8 8.5 6.8 5.4
Gr=1C (n) 594.5 63.7 27.3 16.9 9.8 7.1 5.8

Expected Wait (m = 12)

ε = 0.005 0.01 0.015 0.02 0.03 0.04 0.05
Gr=6S (n) 1618 267.4 94.0 48.5 19.9 11.4 8.1
Gr=2C (n) > 3× 104 2912.3 169.0 66.4 21.1 11.8 8.0

Estimated standard errors for the waiting times are 5% or less.

Theorem 4 does not allow us to assess if the increase in the persistence of ghettos
in inner-cities compared to streets is quantitatively significant. In particular, the
share ε of tolerant agents should not be unrealistically small for the effect to apply.
For this purpose I have relied on simulations in order to calculate the waiting
times W (0, [0, 0.5]) until at least 50 percent of all residents are white. Table 4
compares the waiting times for the street/ inner-city pairs (Gr=2S (n) , Gr=1C (n)) and
(Gr=6S (n) , Gr=2C (n)), respectively. These pairs have been chosen so that individual
neighborhoods have equal size in both geometries, i.e. m = 4 and m = 12. In both
cases I have again set the white and black tolerance levels at αw =

7
12
and αb =

3
4
.

I have assumed that 80 percent of all house seekers are white, and I have varied
the share of tolerant agents between one half of a percent and 5 percent. This
implies that a vacant apartment with only black neighbors will switch color with
a probability between 2 percent and 17 percent which I consider reasonably large.
The waiting times for the inner-cities are consistently larger than the corresponding
waiting times on streets. For ε = 0.02 the inner-cities are more than 30 percent
more persistent while for ε = 0.01 the difference is at least three-fold.

tion of a black ghetto in a bounded neighborhood. As in theorem 4 one can then show that
WB(n,[0,1−δ])
WC(n,[0,1−δ])

→ ∞ as ε → 0 because n grows faster than
√
n. Inner-cities are therefore more

persistent than streets but less persistent than bounded neighborhoods.
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5 Historical Evidence

This section evaluates the empirical relevance of my model for explaining segrega-
tion in the US. The main prediction of the theory is the rapid formation of ghettos
on streets and in inner-cities as a response to shifts in the housing market. As a
natural first-pass test I compare the degree of residential segregation over the last
200 years with changes in the relative demand for housing between African Ameri-
cans and non-blacks. This exercise provides broad support for the model. In order
to test the more subtle implications of the theory I take a closer look at the rise
of the black ghetto in Harlem. In particular, I find that the dynamics of Harlem’s
transformation conform with the contagious growth process predicted by the the-
ory, which has random black clusters form and then expand along the boundaries.
Although I concentrate on the residential separation between African Americans
and non-blacks for most of this section I provide evidence for “avenue waves” in
Chicago which involved both African Americans and European immigrants.

5.1 The Rise of the Black Ghetto at the Turn of the Cen-

tury

After the Civil War race relations improved, and northern cities such as Cleveland,
Philadelphia and Chicago established integrated schools, hospitals and colleges.40

Throughout the 19th century segregation between African Americans and non-
blacks was relatively low, and the average African American lived in a ward that
was only 20 percent black.41 As far as spatial concentrations of blacks existed,
they had not stabilized yet: in New York, for example, the principal clusters of
black concentration moved repeatedly over the century.
Between 1860 and 1890 the share of blacks in fact decreased in many of the

booming northern cities, and blacks made up only 2.5 percent of the population in
the North and Midwest in 1890. Blacks started to leave the South and migrate to
the booming North in significant numbers only after 1890.42 Even then, the black
growth rate just about matched the rate of increase of the general population,
such that the share of blacks in the housing market was likely to be low. This
combination of a low degree of segregation, shifting clusters of black concentration
and an insignificant presence in the housing market before the turn of the century
is consistent with my model when the share of blacks is non-critical, i.e. smaller

40Cleveland, for example, integrated schools in 1871 (Kusmer 1976).
41See table 2 in Cutler, Glaeser and Vigdor (1997).
42It is puzzling that few blacks left the South between 1865 and 1890 even though economic
conditions were poor. Kusmer (1976) argues that the first black generation born in freedom had
a different perspective from their parents and sought to exploit improved economic opportunities
more actively.

32



than the share 1− λ̂ which has to be exceeded to give rise to ghettos.
This picture changed radically with the outbreak of the first World War in

1914. Immigration to the US fell off sharply and never recovered after the war due
to the immigration restriction enacted in the 1920s. The manufacturing industry
continued to demand cheap labor, and companies began to dispatch labor agents
to the South in order to convince more African Americans to move north. These
factors resulted in a massive population movement between 1916 and 1919 known
as the Great Migration43 that continued well into the second half of the 20th
century. The annual growth rate of the black urban population in the North was
3.1 percent between 1910 and 1940 and 4.4 percent between 1940 and 1970.44

Competition for housing intensified because the black community grew at a
much faster rate than the general population in northern cities. In Chicago, for
example, 18.5 percent of the net inflow of newcomers between 1920 and 1930 were
African American, and in Cleveland the corresponding share was an impressive
36.2 percent.45 As blacks were poorer than the average newcomer, they presumably
dominated the market for apartments at the lower end of the socio-economic scale
far more than these numbers indicate. It is likely that the share of blacks did
not even have to exceed 50 percent to transform a residential area into a black
ghetto46 because evidence from surveys47 shows consistently that blacks have a
higher tolerance level than whites. Therefore, it is perfectly plausible that the
share of blacks in northern cities was high enough during this period to trigger the
rapid formation of ghettos in inner-cities and on streets as predicted by the theory.
In the wake of the Great Migration, northern US cities, in particular, became

indeed much more segregated. In 1940 the average African American lived in a
residential area that was 37.6 percent black and by 1970 that share had increased
to almost 70 percent. Cutler, Glaeser and Vigdor (1997) found in a sample of 313
US cities that only 5 cities had ghettos in 1910 but more than a third had one by
1970.48 Most of these almost exclusively black neighborhoods formed around the
principal black cluster of concentration that happened to exist before the Great
Migration.
In my model decentralized racism is the sole transmission channel that trans-

lates the conditions in the housing market during and after the first World War

43In these years alone the number of African Americans doubled in Cleveland, tripled in
Chicago and increased more than sixfold in Detroit (Kusmer 1976).
44See table 2 in Cutler, Glaeser and Vigdor (1997).
45See table 1 in Spear (1967) for Chicago and table 1 in Kusmer (1976) for Cleveland.
46In section 3.1 I found that a street Gr=2S with black and white tolerance levels αb =

3
4 and

αw =
1
2 becomes a ghetto as soon as the share of blacks exceeds 30 percent.

47Cutler, Glaeser and Vigdor (1997) cite evidence from the General Society Survey.
48The authors characterize a city as having a ghetto if the index of dissimilarity is greater than
0.6 and the index of isolation exceeds 0.3 (see the paper for details on calculating these standard
measures).

33



into changes in the level of segregation. Although other factors undoubtedly con-
tributed to this process, I argue that decentralized racism was the most significant
channel during the early formative years. First, sorting by socio-economic dif-
ferences explains less than half of the observed variation in segregation indices
between neighborhoods, even in the 1950s (Taeuber and Taeuber 1965). Second,
collective-action racism49 could not prevent the invasion of white neighborhoods at
the onset of the Great Migration, as the example of Harlem shows. African Amer-
icans only made up a small share of the population, and the relatively peaceful
race relations were only gradually overshadowed by resentment due to continued
black migration from the South. Even neighborhoods that remained largely white
during this period experienced scattered instances of black families moving in and
out according to an unpredictable pattern.50 Such noisy “reshuffling” of blacks in
’white ghettos’ does not fit a theory of collective racism but is consistent with my
model in the case of up-scale neighborhoods, for example, which few blacks could
afford and where whites would face little competition in the housing market.
There is stronger evidence that collective-action racism played a more signifi-

cant role by the middle of the century in sustaining segregation. By then, ghet-
tos were already well-established, and a formal and informal institutional frame-
work consolidating segregation had developed. Cutler, Glaeser and Vigdor (Cutler,
Glaeser, and Vigdor 1997) find that in 1940, blacks paid relatively more for equiv-
alent housing than whites in more segregated cities, as compared to less segregated
cities. While this observation is consistent with some degree of collective-action
racism, it disappeared from the data by 1990. Nowadays whites pay more for equiv-
alent housing than blacks in more segregated areas, suggesting that decentralized
racism is again the driving force behind continuing segregation.
Segregation has slightly declined since the 1970s because formerly all-white

neighborhoods have become more racially mixed. But almost exclusively black
ghettos persist and show very little sign of change. The stability of ghettos is
surprising because blacks no longer dominate the housing market as they did in the
aftermath of the Great Migration. After 1970 the black community in the northern
cities only increased at an annual rate of 0.9 percent. While the share of blacks
has stagnated other ethnic groups have shown vigorous growth. In particular, the
share of Hispanics in US cities doubled between 1970 and 1990 to 10.3 percent.51

49An important type of collective-action racism were racial zoning or restrictive covenants that
excluded blacks from particular residential areas (Massey and Denton (1993)).
50Smith (1959) compared the census data for New Haven between 1940 and 1950 and found
that 76 blocks with a black share of less than 10 percent became all-white, while black families
moved into 72 formerly all-white blocks. One third of these new blocks were contiguous to those
which they were replacing and the rest were scattered throughout the city and lacked any spatial
pattern.
51Mexican Americans are also highly segregated and live in neighborhoods with a Mexican
share of 50.3 percent (Borjas (1995), table 4).
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Inner-cities can provide an explanation for the longevity of black ghettos despite
the fact that African Americans face far more competition in the housing market.
The theory also suggests that today’s inner-city ghettos are unlikely to disappear
in the near and even medium term unless they are forcibly broken up by some
policy intervention, such as urban redevelopment.

5.2 Harlem’s Transformation into a Black Ghetto

Harlem was an affluent suburb of New York City in the 19th century and became
the largest black ghetto in the US by 1920. The various stages in the spatial growth
of the ghetto are well documented, which allows me to directly test the dynamic
predictions of my theory on streets and in inner-cities, i.e. the growth of randomly
forming black cluster around their boundary.52

New York City provides an almost ideal environment for the application of my
model. The residential turnover rate was high because former peripheral neighbor-
hoods, such as Harlem, were continually redeveloped as the metropolis expanded
northwards on Manhattan island. Harlem, for example, was a rural village and
became incorporated only in 1873. By 1886, the three lines of the elevated railroad
came as far north as 129th Street, and a massive building boom in the 1880s made
Harlem a preferred residential area for New York City’s white upper- and upper-
middle-classes. Lower Harlem experienced an influx of Eastern European Jews in
the 1890s and of Italians before 1890 (see the map of Harlem in figure 13).
Like other northern cities, New York was not particularly segregated in the

19th century. African Americans did not dominate any single neighborhood, and
the principal clusters of black concentration moved repeatedly up the West Side
over the course of the century.53 In 1890, for example, six wards in Manhattan
had a substantial black population of between 2,000 and 4,000.
There were few scattered black families in Harlem before the turn of the century.

Most of them were servants and lived at the periphery of white Harlem. Blocks
occupied by African Americans in 1902 are marked in figure 13. African Americans
entered Harlem in greater numbers during the years 1900-1914, when the black
population of Manhattan doubled. Development in West Harlem north of 130th
Street had been slow in the 1890s because the area lacked public transportation.
The construction of the Lenox subway line up to 145th Street in the years 1898
to 1904 set off a building boom and massive speculation in property along Lenox

52This section is based on Osofsky’s (1963) comprehensive history of Harlem (especially chap-
ters 5-8).
53In the early 19th century many blacks lived in the Five Points district on the site of the
present City Hall. By 1860 the district was overwhelmingly Irish and the largest cluster of African
Americans could be found in Greenwich Village. Between 1880 and 1890 their numbers declined
as the district became predominantly Italian. San Juan Hill and the “Tenderloin” (between 20th
Street and 53rd Street) emerged as the most populous black residential areas.
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Figure 13: Harlem was an essentially all-white middle and upper-class neighbor-
hood in the 19th century. Lower Harlem saw an influx of Eastern European Jews in
the 1890s and had an Italian section in the south-east. Only a few scattered black
families lived in blocks at the periphery of central Harlem which are marked black
in the figure. West Harlem became a black ghetto until 1920 (darkly shaded). The
ghetto expanded in the 1920s to the east and south as indicated by the arrows.
Blacks lived as far south as 110th Street by the end of the decade.
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and Seventh Avenue where entire new apartment blocks were built. By 1904-
5 the bubble burst and realtors woke up to the fact that there was insufficient
demand for these high-quality apartments. Landlords began to compete intensely
for tenants and some of them started to open their apartment houses to blacks.
Demand for decent housing was strong amongst African Americans during this
period. More and more blacks migrated to New York City, and established blacks
were displaced from their old living quarters in Lower Manhattan as the business
district expanded.54

This combination of factors colluded to establish the initial black cluster of
residents in Harlem which then expanded dramatically in the aftermath of the
Great Migration. Osofsky (1963, page 17) emphasizes that Harlem’s black colony
would most likely have been a passing phenomenon just like previous clusters of
black concentration in Lower Manhattan without the enormous influx of black
migrants after 1900:

The most important factor underlying the establishment of Har-
lem as a Negro community was the substantial increase of Negro popu-
lation in New York City in the years 1890-1914. That Harlem became
the specific center of Negro settlement was the result of circumstance;
that some section of the city was destined to become a Negro ghetto was
the inevitable consequence of the Negro’s migration from the South.

African Americans took over West Harlem in a striking geographical pattern
which resembles contagious growth. There was a clear ’color line’ that separated
the southward advancing black settlement from established white residents. This
type of dynamics is not only predicted by my theory but, more generally, suggests
that decentralized local interaction between residents should be at the heart of
any realistic model of segregation. Landlords attempted to stop the black invasion
through collective-action racism and successively signed restrictive agreements on
West 140th, 137th, 135th, 131st, 129th Streets etc., which obliged them not to
rent to blacks. Each of these local arrangements ultimately failed because sooner
or later some landlord would ’panic-sell’ and the coalition collapsed. Restrictive
agreements also invited ’block-blusters’ to test the strength of support for unified
action. These speculators bought single apartment houses on an all-white street
and invited black tenants. Adjoining white owners then had to re-purchase the
apartment house at inflated prices in order to evict the black tenants again.
By 1920, an almost exclusively black ghetto had formed north of 130th Street

and West of 5th Avenue as shown in figure 13. The ghetto expanded further to the

54Many black apartment blocks disappeared when Pennsylvania Station was built in the Ten-
derloin at the beginning of the century. In 1914 African Americans occupied about 1,100 different
houses within a 23 block area of Harlem and 80% of the whole black population lived in Harlem
by then.
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east and south and completely crowded out the white residents in central Harlem.
By the end of the 1920s African Americans lived as far south as 110th Street and
the ghetto consolidated in the subsequent decades as black migration continued.

5.3 “Avenue waves” in Chicago

I have emphasized that ghettos are not persistent on streets because the ghetto
formation process is reversible. The model therefore predicts “avenue waves” in
response to periodic shifts in the housing market. In the 19th century there existed
a natural source of variation because different groups of immigrants entered the
country at different points in time. Immigration in the first half of the century
was characterized by waves from Northern Europe while in the latter half of the
century immigrants from Southern and Eastern Europe dominated. If one assumes
that most immigrants arrived poor in the US and climbed the social hierarchy at
similar rates one would expect that different ethnic waves of immigrants joined the
housing market for residential areas of a particular quality at different points in
time. This, in turn, induced shifts in the balance λ of the housing market.55

Burgess (1928) recorded the resulting avenue waves in Chicago as shown in
figure 14. He notes that “the great arterial business streets of the city have been
and remain the highways of invasion”. Of particular interest are the A and B waves
where ’new’ immigrant groups (Hungarians, Italians and Poles) crowd out ’older’
immigrants (Germans and Scandinavians).

6 The Relationship between Stochastic Stability

and Clustering

My analysis characterized the evolution of the residential neighborhood process
through clustering rather than the standard stochastic stability techniques devel-
oped by Kandori, Mailath and Rob (1993) and Young (1993). This section explores
the relationship between both techniques and concludes that stochastic stability
can seriously mispredict the long-run behavior of a stochastic system because it
ignores too much information about its undisturbed dynamics. The problem is
most severe for the large-scale systems which we typically encounter in evolution-
ary environments. In the context of my model I show that stochastic stability fails
to predict the rise of ghettos on streets because it does not take into account the
balance in the housing market.

55The “avenue waves” effect should be strongest for streets at the lower socio-economic end of
the market. The diffusion rate at which residents move into better neighborhoods differs by eth-
nicity and between individuals such that ethnic waves should become increasingly intermingled.
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Figure 14: Chicago’s avenue waves (Burgess, 1928) - Germans/Scandinavians fol-
lowed by Hungarians/ Italians (A), Germans/ Scandinavians followed by Poles (B),
invasion of African Americans (C), invasion of Russian Jews (D), invasion of Czechs
(E), Polish invasion (F), invasion of Irish (G), Invasion of African Americans (H)
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But it is my hope that clustering will enhance our understanding of both future
and existing evolutionary models. I present two examples which are intended to
illustrate the robustness of clustering versus stochastic stability. First, I consider
a simple model of imitation where agents live on a general (not necessarily regu-
lar) class of graphs and hold one of two possible ’opinions’. Whereas stochastic
stability predicts that agents synchronize their opinions in the long run, clustering
analysis reveals that, to the contrary, a system of many agents will typically be in
disagreement. Second, I revisit a well-known large population coordination game
which has been studied by Ellison (1993). Although both clustering and stochastic
stability predict the long-run behavior of the large-scale system correctly, in this
case the standard technique is vulnerable to seemingly innocuous changes in the
dynamics.
I will rely on a characterization of stochastic stability recently introduced by

Ellison (1999). His waiting-time approach, unlike the “tree-surgery” arguments
used in the earlier papers, not only makes the reasoning behind stochastic stability
arguments very transparent but also allows me to clearly identify the key weakness
of this concept. Ellison considers a general ’model of evolution’ (Z, P, P ε) with
a state space Z and a Markov process defined over Z in discrete time56 with
’disturbed’ transition matrix P ε and ’undisturbed’ transition matrix P . The matrix
is assumed to be ergodic for each ε > 0 and, P ε is continuous in ε such that P 0 = P .
Ellison then defines a cost function c : Z × Z → R+ ∪ ∞ such that for all pairs
of states η, η′ ∈ Z, limε→0 P εηη′/ε

c(η,η′) exists and is strictly positive if c (η, η′) <∞
(with P εηη′ = 0 for sufficiently small ε if c (η, η

′) = ∞). Intuitively, the cost of
transition can be thought of as the number of independent mutations necessary
for it to occur.
Ellison introduces two new concepts, the radius and the coradius, which he

uses to bound the waiting times required to leave and enter the basin of attraction
of a union of limit sets57 Ω ⊂ Z. The radius R (Ω) describes the minimum cost
of leaving the basin of attraction D (Ω) and is a measure of the persistence of the
process when it rests at Ω. Formally, Ellison defines a path out of D (Ω) as a
sequence of distinct states (η1, η2, .., ηT ) with η1 ∈ Ω, ηt ∈ D (Ω) for 1 < t < T and
ηT /∈ D (Ω). The set of all these paths is denoted S (Ω, Z −D (Ω)). The radius
can then be defined as

R (Ω) = min
(η1,..,ηT )∈S(Ω,Z−D(Ω))

T−1∑
t=1

c (ηt, ηt+1) . (7)

56The residential neighborhood process is defined in continuous time. Appendix A illustrates
how such a process can be transformed into a corresponding discrete time process such that all
of Ellison’s results carry over.
57The limit sets or recurrent classes of a stochastic system are the sets of states which can
persist in the long run absent noise or mutations (ε = 0).
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The coradius CR (Ω), on the other hand, captures the length of time necessary to
reach the basin of attraction of Ω starting from any other state by counting the
number of intermediate mutations:58

CR (Ω) = max
η1 /∈Ω

min
(η1,...ηT )∈S(η1,Ω)

T−1∑
t=1

c (ηt, ηt+1) (8)

A combination of a large radius R (Ω) and a small coradius CR (Ω) ensures that
the process reaches the basin of attraction D (Ω) quickly, but is very reluctant to
leave it. Building on this intuition Ellison can prove the following theorem:

Theorem 5 The union of limit sets Ω is stochastically stable if R (Ω) > CR (Ω).
The waiting time to leave the basin of attraction D (Ω) is W (Ω, Z −D (Ω) , ε) ∼
ε−R(Ω), and the process reaches a long-run equilibrium after a waiting time of
W (η,Ω, ε) = O

(
ε−CR(Ω)

)
for any η /∈ Ω.

Proof: see Ellison (1999)

The waiting time approach has the advantage of giving a bound on the rate
of convergence to the long-run equilibrium. In models of local interaction the
coradius typically remains small even if the system is large (as in Ellison (1993)).
This observation is then interpreted as evidence that local interaction ’speeds up’
convergence to the long-run equilibrium.
Unfortunately, the coradius can give a very misleading picture of how fast the

process actually reaches the basin of attraction D (Ω). The random walk example
discussed in the introduction illustrates the problem nicely (see figure 1). It is
easily shown that only the state n + 2 is stochastically stable because it takes at
most one mutation to reach its basin of attraction, but two mutations to leave it
(i.e. R ({n+ 2}) = 2 and CR ({n+ 2}) = 1). Theorem 5 also indicates that the
process reaches its long-run equilibrium quickly because the waiting time is of the
order O

(
1
ε

)
independent of the ’size’ n.

The example is simple enough to carry out a more careful analysis. Although
the process will spend almost all its time at n + 2 as ε → 0, it is instructive to
calculate how small ε has to be depending on the size n of the system in order
to find the process in a small δ-neighborhood [(1− δ)n, n+ 2] of the long-run
equilibrium with probability γ > 0. The following condition on ε and n has to be

58Ellison also defines the modified coradius CR∗ (Ω) which bounds the waiting time until
convergence more precisely. For the purpose of comparing clustering and stochastic stability,
however, is suffices to use the simple coradius.

41



satisfied:59

2 ε
1−ε

((
1
2

)(1−δ)n
−
(
1
2

)n)
+
(
1
2

)n−1
+
(
1
2

)n−1 1−ε
ε

1 + 2 ε
1−ε

(
1−

(
1
2

)n)
+
(
1
2

)n−1
+
(
1
2

)n−1 1−ε
ε

≥ γ

For large n this condition becomes approximately(
1

2

)n−1
1− ε

ε
≥

γ

1− γ
, (9)

which requires that ε < εn =
(
3
2

)−n
.60

Therefore, stochastic stability describes the long-run behavior of the random
walk well on large systems only if the noise term ε is extremely small. Using the
technique of appendix B it is straightforward to show that the waiting time until
convergence is at least of the order 3n even though it takes just a single mutation
to reach the δ-neighborhood. Convergence to the stochastically stable equilibrium
is therefore anything but fast.61

What has gone wrong? Stochastic stability analysis essentially ignores the
nature of the undisturbed dynamics. In my simple example it suffices that there is
some, however small, positive probability of reaching state n starting from state 1.
This transition has zero cost attached to it and hence does not enter the calculation
of the coradius. But the larger the size n of the system, the more the undisturbed
dynamics pushes the process away from state n, and the error term ε has to decrease
at an exponential rate in order to sustain the predictions of stochastic stability.
The coradius formula therefore fails for two reasons in predicting the waiting time
until convergence. First of all, the single mutation to reach D ({n+ 2}) requires
a waiting time that increases exponentially with the size of the system. Second,
overcoming the negative drift of the undisturbed dynamics between states 1 and
n will require a waiting time that also increases exponentially in the size.
For the purpose of characterizing the long-run behavior of a dynamic system,

stochastic stability analysis takes the wrong limit by fixing the size n of the system
and letting ε → 0. While we typically think of the noise term ε as small, we also
want it to be sufficiently bounded away from 0 such that the stochastic system does
not get ’stuck’ in intermediate limit sets in the medium run. At the same time
we usually want our results to hold primarily for environments with many agents,

59The probability of finding the random walk in the δ-neighborhood can be calculated as in
appendix C.
60Note, that otherwise

(
1
2

)n−1 1−ε
ε
<
(
1
2

)n−1 ( 3
2

)n
→ 0 as n→∞.

61The estimate for the waiting time is the product of the waiting time until a single mutation
occurs (which is at least ε−1n ) and the waiting time to reach the δ-neighborhood (which is of the
order 2n as the ratio of the probability for a downward-jump and the probability of an upward
jump is 2 under the undisturbed dynamics).
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due to the bounded rationality assumption buried in almost all evolutionary mod-
els. Agents behave myopically or use rules of thumb because their computational
abilities are assumed to be limited. This simplification in the decision-making
process is particularly compelling for models with local interaction, such as my
residential neighborhood process, because the number of possible states increases
exponentially in the size of the system.
Clustering describes the long-run and medium-run behavior of a stochastic

process more adequately by taking the ’correct’ limit n → ∞. The perturbation
ε is kept fixed such that clustering takes both the disturbed and the undisturbed
dynamics of the process into account. In my simple example it can be easily
checked that the process clusters around any δ-neighborhood of state 0. More-
over, the process reaches the neighborhood quickly as the waiting time satisfies
W (n, [0, δn]) ∼ n. Clustering therefore completely reverses the predictions of the
standard analysis.

6.1 Example I: Formation of Black Ghettos on Streets

I next demonstrate that stochastic stability describes the evolution of the residen-
tial neighborhood process very poorly on streets, which vindicates my choice of
clustering over the standard technique for the analysis of the model.
The only limit sets of the process on streets are the all-white and all-black

configuration. It is straightforward to determine the radius and coradius of the
black ghetto configuration ηb. The process will leave the basin of attraction of the
ghetto only once a minimally stable white cluster of length w = [2r (1− αw)]

+

has formed, i.e. at least w completely tolerant white house-seekers have settled on
the street. Therefore, one can deduce that R ({ηb}) = w. Similarly, an all-white
neighborhood can turn into a black ghetto with positive probability only in the
presence of a minimally stable black cluster of length b = [2r (1− αb)]

+ which tells
us that CR ({ηb}) = b.
Because blacks are assumed to be more tolerant than whites, we know already

that b ≤ w. If blacks are sufficiently more tolerant and/or the radius of interaction
r is sufficiently large the inequality becomes strict. In this case the black ghetto
is stochastically stable according to theorem 5 and will be reached quickly in the
medium run because the waiting time is O

(
ε−b
)
on a street of fixed size n.62

But these conclusions contradict the findings of section 3 where I showed that
the process can cluster both around the all-black and the all-white configuration
depending on the ethnic composition of the housing market. Intuitively, stochastic
stability fails for exactly the same reasons as in the simple random walk example
I considered previously. The radius/ coradius reasoning focuses on a ’sideshow’ of

62The bound on the waiting time does not depend on the size of the system which is interpreted
as ’fast’ convergence.
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the dynamics by looking at the emergence of minimally stable clusters of minority
residents. Unless the share ε of tolerant agents is unrealistically small, such clusters
will always arise quickly. For large and even moderately large streets, however, all
the ’action’ comes from the undisturbed dynamics which governs the evolution of
the street after minimally stable clusters have formed. The ethnic composition of
the housing market then determines whether white or black clusters can expand
with positive drift. Clustering captures this effect, while stochastic stability does
not.

6.2 Example II: Imitation and Coordination

The following simple model of imitation between communicating agents on a graph
provides a further illustration for the weak predictive power of stochastic stability
when applied to large-scale systems. It is also of interest in its own right because
the result holds for a wide class of non-regular graphs.
I consider n agents who live on some connected graph of order q.63 I refer to

this class of graphs as ’proper’ graphs. This can be a street, an inner-city area or
some more complicated structure such as a simple street with an even number of
agents where each agent has an additional randomly drawn third neighbor. Agents
choose to hold exactly one of two possible ’opinions’ which I denote 0 and 1. Time
is continuous, and all agents revise their opinion each time their Poisson ’alarm
clock’ goes off at rate 1. With (small) probability ε they listen to an exogenous
signal telling them to change their opinion. Otherwise, they sample one of their q
neighbors and imitate her action.
Stochastic stability suggests that society should hold unanimous opinions most

of the time. It takes one mutation to leave the unanimous configurations η0 and
η1 where all agents hold either opinion 0 or opinion 1. On the other hand, a path
leading to an unanimous configuration has cost 0. Therefore, the radiusR ({η0, η1})
exceeds the coradius CR ({η0, η1}) and theorem 5 applies.
However, Monte Carlo simulations do not confirm this prediction, but suggest,

to the contrary, that typical societies are perfectly ’confused’. For the numerical
analysis I call a society ’unanimous’ if the long-run share X̃n of agents with opinion
1 lies either in the interval [0, 0.1] or the interval [0.9, 1]. Society is called ’confused’
if the share X̃n lies in the interval [0.45, 0.55], i.e. society is almost evenly divided
into two camps. Table 5 compares the respective probability of society being
unanimous or confused for streets Gr=2S (n) of varying size n and exogenous signals
ε of different strength. Society is well described as unanimous only if both the size
of the graph and the disturbance term ε are small. As the size of society increases
agents hold very rarely the same opinions and society becomes more and more
confused. ’Confusion’ will be more pronounced if agents are more likely to listen

63A graph has order q if q edges meet at each node.
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Table 5: Comparing the probability pU that society is ’unanimous’ with the proba-
bility pC that society is ’confused’ when agents imitate the opinions of their neigh-
bors. Agents live on a street Gr=2S (n) of varying size n and listen to exogenous
signals ε of different strength.

ε = 0.1

n = 10 n = 50 n = 100 n = 200 n = 1000
pU 0.326 0.002 0.000 0.000 0.000
pC 0.104 0.275 0.423 0.552 0.899

ε = 0.01

n = 10 n = 50 n = 100 n = 200 n = 1000
pU 0.836 0.168 0.030 0.001 0.000
pC 0.022 0.131 0.216 0.300 0.602

Estimated standard errors are 0.001 or less for all estimates. Society is called ’unanimous’ if X̃n

lies in the interval [0, 0.1] or [0.9, 1], and is called ’confused’ if X̃n lies in the interval [0.45, 0.55].

to the exogenous signal, but even if this event occurs very rarely (ε = 0.01) society
will be confused at least 60 percent of the time for n ≥ 1000.
The failure of stochastic stability analysis can be again traced back to its in-

ability to take into account the intermediate dynamics, and its overemphasis on
the noisy dynamics close to the two unanimous configurations. This can be most
clearly seen by considering the special case of a complete graph of size n where
each agent has n−1 neighbors. For large n the process is well described by the de-
terministic approximation of the change in the share of agents x (t) holding opinion
1:

dx

dt
= share agents with opinion 0× Prob. of switching from 0 to 1

− share agents with opinion 1× Prob. of switching from 1 to 0

= (1− x) [ε+ (1− ε) x]− x [ε+ (1− ε) (1− x)]

= ε (1− 2x) (10)

This differential equation has a unique stable steady state at x∗ = 1
2
, which suggests

that the imitation process clusters around x∗ in the case of complete graphs. Note
that the imitation effect cancels out because it is linear: the probability of changing
one’s mind is proportional to the number of neighbors with different opinion. The
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exogenous signal then pushes the process towards x∗.
The next theorem shows that this observation extends to any increasing se-

quence of proper graphs and that the process converges fast.64

Theorem 6 Consider the imitation process on some sequence G (n) of proper
graphs. The share of agents holding opinion 1 clusters around any neighborhood
of x∗ = 1

2
. The process reaches some δ-neighborhood of x∗ after a waiting time of

W (n, [x∗ − δ, x∗ + δ]) = O (1).

Proof: see appendix I

If we believe that typical societies are large we should indeed observe them to
be ’confused’ most of the time. The numerical results in table 5 reassure us that
societies do not have to be unduly large for theorem 6 to hold.

6.3 Example III: Revisiting Ellison’s (1993) Model of Local

Interaction and Coordination

Finally, I demonstrate how clustering can enhance our understanding of existing
evolutionary models whose dynamics was characterized through stochastic stability
analysis. Ellison (1993) examined how agents in large populations learn to play a
2 × 2 coordination game, shown in figure 15. Strategy A is assumed to be risk-
dominant. Agents live on a street with radius of interaction r.65 Time is discrete,
and in each period t agents play with probability 1 − 2ε the best response to the
average play of their neighbors at period t−1. With probability 2ε they choose one
of the two strategies A and B at random with 50-50 probability. This system has
the two limit sets ηA and ηB with all agents playing strategy A and B, respectively.
Because of risk dominance, the best response of a player will be action A

if at least some fraction q∗ < 1
2
of her neighbors play A. This implies that a

cluster of at most r + 1 agents playing strategy A can expand contagiously under
the undisturbed dynamics and take over the entire street. The limit set ηA has
therefore a large basin of attraction, while the limit set ηB has a small one. The
radius/ coradius reasoning then quickly establishes that all agents play A in the
long run (see Ellison (1999)).
Stochastic stability predicts the same long-run behavior as clustering, as I will

show shortly. Nevertheless, this prediction is not very robust because tiny changes
in the dynamics of the model can make ηB the stochastically stable equilibrium.
Consider, for example, the following modification: in each period an agent faces

64Note, that theorem 2 and theorem 3 only hold for an increasing sequence of streets and
inner-cities, respectively.
65Kandori, Mailath and Rob (1993) look at the case of uniform interaction.
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d,c b,b

a,a c,dA

B

A B

Figure 15: Stage game with strategy A as the risk-dominant strategy: (a− d) >
(b− c)

a different stage game with a very small probability σ > 0 where she receives an
additional payoff g from playing B against a neighbor who also plays B. I assume
that g is large enough, such that this agent would play B if at least one of her
neighbors played B in the previous period. Intuitively, we would not expect this
change to have a major effect on the behavior of the model. After all, a cluster of
r+1 agents playing strategy A is still very likely to expand, even though the growth
of the cluster is no longer contagious. But it still grows with a strong positive drift
and the modified system very much resembles the residential neighborhood process
on a street with the cluster of agents playing A corresponding to the minimally
stable cluster of black residents and blacks dominating the housing market. The
next theorem confirms this intuition.66

Theorem 7 Consider Ellison’s modified population coordination game on a street
GrS (n). There exists some critical value 0 < σ̃ < 1 such that the following holds
for σ < σ̃.

1. Most agents play strategy A in the long run, i.e. the share of agents who play
strategy A clusters on the interval [x∗A (ε) , 1] with limε→0 x

∗
A (ε) = 1.

2. For ε sufficiently small the waiting time until the share of agents playing
strategy A exceeds 1− δ satisfies W (n, [1− δ, 1]) = O (1).

Proof: The proof is exactly analogous to the proofs of theorem 2 and lemma 1 in
section 3.2 and is therefore omitted. Action A (B) corresponds to a resident
being black (white) and the parameter σ plays the role of the balance in the
housing market.

66The second part of the theorem contains theorem 3 in Ellison (1993) as a special case.
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Note, that the theorem also holds for Ellison’s original setup which corresponds
to the special case σ = 0. Hence the small modification of the dynamics has no
discontinuous effect on the evolution of the model. However, it has a dramatic effect
on the basins of attraction of the two limit sets ηA and ηB. In particular, the size of
the basin D (ηA) is much smaller as the process can escape from configuration ηA as
soon as two neighbors play strategy B. Therefore, ηB has a coradius CR (ηB) = 2
while the radius is still R (ηB) = [q

∗2r]+1. If the radius of interaction is sufficiently
large, the configuration ηB, rather than ηA, is stochastically stable according to
theorem 5.
The sensitivity to innocuous changes in the dynamics of a model is a worrisome

feature of stochastic stability. The problem arises, because the standard technique
ignores the nature of the dynamics after the process has left the basins of attraction
of the limit sets ηA and ηB. This part of the dynamics is not significantly influenced
by small changes in σ, which explains why the predictions of clustering remain
unaffected.

7 Conclusion

This paper outlines a new theory to understand the rise and the persistence of
ghettos in US cities. I build a simple evolutionary model which is completely de-
scribed by the geometry of the residential area, the tolerance level of both ethnic
groups and the balance in the housing market. I analyze in what way these pa-
rameters interact to lead to rapid segregation and found that the balance in the
housing market is the determining factor. Furthermore, I prove that black ghettos
can be very persistent in large inner-city areas.
My model can be viewed as a version of Schelling’s (1972) tipping model with

a richer non-uniform geometry of interaction. Exploring the implications of a
local interaction set-up has been the domain of game theorists rather than applied
researchers.67 This is regrettable for two reasons. First, most social networks are
local in the sense that the vast majority of agents interact with and care about only
a small subset of the population. Local networks are therefore a far more natural
modeling environment than the uniform geometry. Second, many surprising and
empirically significant effects arise from the local interaction setup. One of the
first insights of this kind was Ellison’s (1993) observation that local interaction
can hugely speed up the convergence to the long-run equilibrium. In the context
of my model this effect manifests itself in the different mechanisms that uphold
a black ghetto on a street compared to a bounded neighborhood. In the uniform

67Important exceptions are the work by Glaeser, Sacerdote and Scheinkman (1996) on crime
and social interaction and by Möbius (1999) on competition in the telephone industry around
the turn of the century.
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geometry a black ghetto is persistent because white residents feel isolated and
refuse to enter the residential area. On streets, on the other hand, the ghetto
is upheld because blacks dominate the housing market. “Avenue waves” such as
observed in Chicago are only possible within the local interaction setting.
I hope that the new techniques developed in this paper will facilitate the anal-

ysis of models with local interaction. The standard radius/ coradius reasoning is,
in some sense, too successful in simplifying the analysis of a dynamic model. It
ignores a great deal of information about the intermediate dynamics and overem-
phasizes the dynamics around the limit sets. For large-scale systems this imbalance
can lead to poor predictions of the medium- and long-run behavior of a process. In
these cases clustering can prove to be a safer and more robust tool to understand
the evolution of the system.
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A Transforming the Residential Process into a

Discrete Time Markov Chain

It is often easier to work with the discrete time counterpart of a continuous-time
Markov process on the state set Z. In particular, results from the stochastic
stability literature can be applied directly.
The discrete time Markov process is constructed as follows. The discrete ’clock’

is scaled so that time increases in increments of 1
n
. In each period exactly one of

the n residents in the residential is randomly selected, moves out and is replaced
by a newcomer from the housing market. The switching functions are assumed to
be the same as for the continuous-time process. I introduce the convention that
the configuration ηz is obtained from η by inverting the ethnicity of the resident at
size z and leaving the other residents unchanged. The transition matrix P ε then
becomes:

P ε (η, µ) =




1
n
gεw (x (η, z)) if µ = ηz , η (z) = 0
1
n
gεb (y (η, z)) if µ = ηz , η (z) = 1
1− 1

n

∑n
i=1 (1− η (zi)) g

ε
w (x (η, zi))−

− 1
n

∑n
i=1 η (zi) g

ε
b (y (η, zi)) if µ = η

0 otherwise

Note, that each site will be chosen once per time unit just as in the continuous-
time process. For this reason the long-run ergodic distribution and all waiting times
derived for the discrete time model are the same as for the original continuous-time
process.
The ’undisturbed’ transition matrix P is obtained from P ε by setting ε = 0.

The triple (Z, P, P ε) describes a model of evolution with noise as specified by
Ellison (1999) and his results for characterizing waiting times apply.

B Results on Random Walks with Drift

For the following theorem I assume that time is discrete and that time increases
in increments of 1

n
as in appendix A.

Lemma 5 Consider a random walk on the integers between 0 and n > 0. The
process moves up with probability α and down with probability β where α + β ≤ 1
and α > β. Starting from 0 < k < n the process will reach 0 before it reaches n
with probability

pk =

(
β
α

)k
−
(
β
α

)n
1−

(
β
α

)n .
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The waiting time of reaching n - conditional on n being reached before 0 - is bounded
above by 1

α−β + o
(
1
n

)
.

Proof: The conditional probability pk has to fulfill the following standard differ-
ence equation for 0 < k < n:

pk = αpk+1 + βpk−1 + (1− α− β) pk
pn = 0

p0 = 1 (11)

For the second part of the lemma denote the conditional waiting time (mea-
sured in discrete time periods) starting from 0 < k ≤ n with wk. The
following equations have to be fulfilled (for the last one remember that the
process is conditioned not to jump to 0):

wk = α (wk+1 + 1) + β (wk−1 + 1) + (1− α− β) (wk + 1)

wn = 0

w1 =
α

1− β
(w2 + 1) +

1− α− β

1− β
(w1 + 1) (12)

This system can be solved such that w1 ≈
n
α−β + const. For the result to

follow note, that wk ≤ w1 and that each discrete time period has duration
1
n
. QED

C Proof of Theorem 1

Because of the global geometry the space of configurations can be collapsed onto
the reduced state space Z ′ =

{
0, 1
n
, 2
n
, .., 1

}
representing the possible share of

blacks in the bounded neighborhood. The discrete counterpart of the residential
neighborhood process is now described by the following Markov matrix P ε (see
appendix A for construction):

P ε (x, x′) =



(1− x) gεw (x) if x

′ = x+ 1
n

xgεb (1− x) if x′ = x− 1
n

0 otherwise

The process has an ergodic distribution µn on a bounded neighborhood of size
n. For notational convenience I denote the probability of jumping from m

n
to m−1

n

with am and the probability of jumping from
m
n
to m+1

n
with bm. The ergodic
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distribution then has to fulfill the stationarity condition:

(am + bm)µn

(m
n

)
= am+1µn

(
m+ 1

n

)

+ bm−1µn

(
m− 1

n

)
for 0 < m < n

a1µn

(
1

n

)
= b0µn (0)

bn−1µn

(
n− 1

n

)
= anµn (1) (13)

One can then show by induction:

µn

(m
n

)
=
am+1

bm
µn

(
m+ 1

n

)
(14)

Recall, that there are at most three black shares where am = bm:

x1 =
(1−λ)ε
(1−λ)ε+λ

x2 = 1− λ if 1− αw < λ < αb
x3 =

1−λ
1−λ+λε

It can be easily checked that the random walk exhibits a drift towards x1 on
B1 = [0, 1− αb), towards x2 onB2 = (1− αb, αw) and towards x3 over B3 = (αw, 1].
This observation is sufficient to show that the process will be found with prob-

ability approaching 1 inside any neighborhood of {x1, x2, x3}. Consider any δ-
neighborhood of x1 for example (i.e. I = (x1 − δ, x1 + δ)). For x < x1−

δ
2
one can

deduce that

am+1

bm
≤ Cε,δ < 1,

while for x1 +
δ
2
< x < 1− αb the following holds:

bm

am+1
≤ C ′ε,δ < 1.

Let C̃ε,δ = max
(
Cε,δ, C

′
ε,δ

)
. This implies that µn (x) ≤

[
C̃ε,δ

] δn
2
for any x ∈ B1− I.

Therefore the probability of finding the process inside B1 − I is at most

(1− αb − 2δ)n
[
C̃ε,δ

] δn
2
,
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which tends to 0 as n → ∞. The same exercise can be repeated for x2 and x3
which establishes the claim.
Next, I show that the process has a vanishing probability weight around x1.

Using formula 14 repeatedly one can derive:68

µn (x1) = µn (x3)

(1−αb)n∏
m=x1n

λm
n

(1− λ)
(
1− m

n

)
ε
×

×
αwn∏

m=(1−αb)n

λm
n

(1− λ)
(
1− m

n

) x3n∏
m=αwn

λm
n
ε

(1− λ)
(
1− m

n

) (15)

We know that 1− x1 < x3 as λ <
1
2
which allows us to simplify the expression:

µn (x1) = µn (x3)

(
λ

1− λ

)(1−2x1)n
ε(αb−αw)n

x3n∏
m=(1−x1)n

ελm
n

(1− λ)
(
1− m

n

) (16)

Note, that ελx3 ≤ (1− λ) (1− x3). Therefore every term in the product on the
left is less than 1 and one obtains the inequality:

µn (x1) ≤ µn (x3)

[(
λ

1− λ

)(1−2x1)n
εαb−αw

]n
(17)

As αb > αw or λ <
1
2
one finds again that

µn (x1) ≤ [Fε]
n

for Fε < 1. More generally, one can repeat the exercise for any x
′ in some small

δ-neighborhoods of x1 because the inequality 1−x1 < x3 is strict. One then obtains

µn (x
′) ≤ [Fε,δ]

n

for Fε,δ < 1. As before this implies that the probability weight inside the δ-
neighborhood vanishes as n→∞.
It remains to be determined whether the process clusters around x2 or around

x3. Using formula 14 again one obtains:

µn (x2) = µn (x3)

(
λ

1− λ

)(x3−x2)n x3n∏
m=x2n

m
n

1− m
n

ε(x3−αw)n (18)

68All expressions hold up to an integer constraint. As n becomes large the finite number of
misplaced terms in the product have a vanishing influence and are therefore omitted.
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We now use the fact that69[
x3n∏
m=x2n

m
n

1− m
n

] 1
n

=
xx33 (1− x3)

1−x3

xx22 (1− x2)
1−x2

+ o

(
1

n

)
.

This implies, that

µn (x2) = µn (x3)
[
F̃ε

]n
(19)

where

F̃ε =

(
λ

1− λ

)x3−x2 xx33 (1− x3)1−x3
xx22 (1− x2)

1−x2
εx3−αw + o

(
1

n

)

=
ε1−αw

1− λ+ λε
+ o

(
1

n

)
.

As before one can show that the process vanishes on some δ-neighborhood of x2
(x3) if F̃ε < 1 (F̃ε > 1). The process clusters then over x3 (x2).
Finally, it is easy to show that the medium-run behavior of the process is

determined by the initial conditions alone. Consider for example the case where
the initial share of black residents satisfies x1 + δ < x0 < 1 − αb. Using lemma 5
one can deduce that the probability of reaching 1−αb before reaching x1 + δ goes
to zero exponentially as n→∞ and the conditional waiting time for reaching the
δ-neighborhood is bounded above by some finite Wδ. QED

D Proof of Lemma 2

In both marginal processes a switch at some cell z is associated with an ’event’.
For the original process ηt that event is simply the switch of color at that particular
cell. For the simplified process σt on the other hand only a white to black switch
always involves just one cell. A black to white switch might cause a number of
cells to the right or left to switch too, and in this case I call the joint switching of
all those cells the event corresponding to the switch at z.
Think of two identical streets GS (n) such that σt moves on street A and ηt on

street B. At any point in time and for any cell z the cells on both streets switch

69Note, that

[
x3n∏
m=x2n

m
n

1− m
n

] 1
n

= exp

(∫ x3
x2

ln
t

1− t
dt

)
+ o

(
1

n

)
.
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as follows. If σt (z) 6= ηt (z) the cells will switch independently and trigger off the
associated event at the rates specified by the switching rule. If σt (z) = ηt (z) both
cells will flip together and trigger off the associated events with as large a rate as
possible consistent with the requirement that each process flips at the correct rate.
In other words if z switches on street A with rate c1 and on street B with rate c2
(WLOG assume c1 < c2) then they flip together with rate c1 and on street B the
cell will additionally flip at an independent rate of c2 − c1. This procedure defines
a coupled process (σt, ηt) with the correct marginal processes σt and ηt.

70

It remains to be shown that σt ≤ ηt with probability 1 at any point in time
t. At random times ti (i = 0, 1, 2, ..) cells on street A or street B switch (t0 = 0).
There are two types of switches - joint flips which trigger off the associated events
simultaneously on both streets and independent switches which involve either only
street A or street B. I show by induction on i that σti ≤ ηti for all i ≥ 0 which
implies of course that σt ≤ ηt for all t ≥ 0.
i = 0 The claim is true by assumption because σ0 = η0.
i→ i+1 Assume the claim holds for i such that σti ≤ ηti . First, assume the

switch at time ti+1 at cell z is an independent switch on either street A or street
B. If σti (z) 6= ηti (z) we must have σti (z) = 0 and ηti (z) = 1. The associated
event then involves in any case just the cell z and therefore σti+1 ≤ ηti+1 . If
σti (z) = ηti (z) = 1 the independent switch must have occurred on street A because
the flip rate from black to white is increasing in the share of white neighbors of
cell z and y (σti , z) ≥ y (ηti , z). The associated event flips one or more cells on
street A from black to white such that σti+1 ≤ ηti+1 . If σti (z) = ηti (z) = 0 the
independent switch must have occurred on street B for analogous reasons. Cell z
is now occupied by a black resident such that again σti+1 ≤ ηti+1 .
Finally assume that the switch at time ti+1 at cell z is a simultaneous switch on both
streets. If σti (z) = ηti (z) = 1 then on street A possibly some additionally cells
switch from black to white so that certainly σti+1 ≤ ηti+1 . If σti (z) = ηti (z) = 0
only the cell z on both streets changes from white to black so that again σti+1 ≤
ηti+1 . This proves the inductive hypothesis. QED

E Proof of Lemma 3

I will prove the lemma in detail for simple streets (r = 1) where the minimally
stable cluster has size 1. At the end I sketch how the proof generalizes to streets
with radius of interaction greater than 1.
I use coupling once more in order to further simplify the process σt which is

now restricted to a single segment. I start by replacing the space of configurations

70This coupling is a more elaborate variant of the basic Vasershtein coupling for spin systems
(Liggett 1985, chapter 3).
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Figure 16: Dynamics of the random walk ξδt for N = 10 and δ = 0.1

Z over which σt evolves. Because each segment contains at most one black cluster
by construction, a configuration is completely described by the share of blacks in
the set Z ′ =

{
0, 1
N
, .., 1

}
and the position of the first clockwise black resident in

the set Z̃ = {1, 2, .., N}. We can then say that σt evolves on Z ′ × Z̃.
For a fixed δ > 0 I construct a continuous-time random walk ξδt on Z

′ with the
following transition rate cξ (x1, x2) between the states of Z

′:

cξ (x1, x2) =




(1− λ) ε if x1 = 0 and x2 =
1
N

1− λ if x1 > 0 and x2 = x1 +
1
N

2λ if x1 >
1
N
and x2 = x1 −

1
N

1 if x1 =
1
N
and x2 = 0

N λ
1−λ
ε if x1 ≥ 1− δ and x2 =

1−δ
2

N λ
1−λε if x1 < 1− δ and x2 = 0
0 otherwise

Figure 16 illustrates the dynamics of this random walk. It resembles a simple
random walk with a drift determined by λ with the added capability of making
’large’ jumps. With probability N λ

1−λε the process jumps to an intermediate state
1−δ
2
if the share of black residents is larger than 1− δ and to 0 otherwise.
The random walk ξδt and the process σt are now coupled in the following way.

Both evolve from the initial states 0 and (0, 1) respectively, i.e. from an ’all-white’
configuration. Any transition which increases (decreases) the share of blacks ξδt and
X (σt) is called an ’upward’ jump (’downward’ jump). I further distinguish between
(small) downward jumps due to the undisturbed dynamics (’normal jumps’) and
those (potentially large ones) which are caused by the disturbance (’ε-jumps’). For
the coupled process

(
ξδt , σt

)
the transitions are linked by the following rules:

1. Both processes jump upwards independently if ξδt 6= X (σt) and otherwise
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jump simultaneously with as large a possible rate consistent with the re-
quirement that both jump at the correct rate.

2. For normal downward jumps adopt the same convention as for upward jumps.
For downward ε-jumps let both processes jump simultaneously with as large
a possible rate consistent with the requirement that both jump at the correct
rate.

The definition of the random walk ξδt ensures that the share of blacks is always less
likely to increase and more likely to contract compared to the process σt. Using
the same technique as in appendix D one can then show that coupling preserves
the inequality ξδt ≤ X (σt) at any point in time with probability 1.
Therefore, it is sufficient to show that there exists ε such that for all ε < ε the

expected long-run share of blacks Eb (ε) of the random walk ξ
δ
t fulfills Eb (ε) > 1−2δ

for some N . The result can only be true if the random walk has a positive drift i.e.
λ < 1

3
≤ λ̂. Denote the expected waiting time to jump out of the interval (1− δ, 1]

starting from x = 1 with Wout. In this case the process can be found either at
x = 1− δ or at x = 1−δ

2
. Hence the expected waiting time to reach again the state

x = 1 is at most the expected waiting time to get from 1−δ
2
to x = 1 which I denote

with Win. The expected long-run share of blacks can then be bounded below as
follows:71

Eb (ε) ≥ (1− δ)
Wout

Win +Wout
(20)

We now just have to find a lower bound for Wout and an upper bound for Win.
I set ε = N−4. For largeN the waiting time to jump out of the interval (1− δ, 1]

through single downward jumps grows exponentially with N due to the positive
drift of the random walk while the waiting time to leave the interval through an
ε-jump is just 1−λ

Nλε
which is only of the order O (N3). Therefore only the latter

event matters and Wout can be bounded below as follows:

Wout ≥
1

2

1− λ

λ
N3 (21)

Using the same techniques as in appendix B the waiting time Ŵ for reaching
x = 1 starting from 1−δ

2
conditional on no ε-jumps occurring is bounded above by

N
1−3λ = AN .

72 The probability that an ε-jump occurs is at most

AN ×N
λ

1− λ
ε,

71The process spends at least a share Wout
Win+Wout

of the time in the interval (1− δ, 1].
72More precisely, it is N(1−δ)2(1−3λ) +O

(
N−1

)
.

58



which is of the order O (N−2). In the worst case the process ends up at x = 0 after
such an ε-jump. The waiting time to reach x = 1 conditional on no further ε-jump
occurring can the be calculated as73

1

(1− λ) (1− 3λ) ε
+

N

1− 3λ
+O

(
N−1

)
.

Because ε-jumps can only occur for x > 0 the probability for such an event is as
before of the order O (N−2). Therefore the unconditional waiting time W̃ to reach
x = 1 starting from x = 0 is bounded above by

1

1− O (N−2)
× conditional waiting time.

The various estimates allow me to bound the waiting time Win from above as
follows:

Win ≤ Ŵ + AN2
λ

1− λ
εW̃

≤ AN + AN2
λ

1− λ
ε× 2

[
A

(1− λ) ε
+ AN

]

≤ AN + 2A2N2
λ

(1− λ)2
+ 2A2

λ

1− λ

1

N
(22)

Plugging the bounds for Wout and Win into expression 20 delivers:

Eb (ε) ≥ (1− δ)
(
1− O

(
N−1

))
(23)

for ε = N−4. But this proves the lemma: simply choose N large enough such that

Eb (ε) > 1− 2δ for all N > N and take ε = N
−4
.

Finally I briefly discuss how to generalize the proof to radii of interaction r > 1.
There are two complications. First, the single black cluster on the segment grows
by increments of 1 but can shrink by up to r in a single transition under the
undisturbed dynamics of the process σt. The share of whites λ in the housing
market therefore has to be low enough such that the associated random walk ξδt
has a positive drift. Second, the size of the minimally stable cluster is now generally
some b > 1 and the dynamics requires b ’mutations’ in order to jump out of the
basin of attraction of x = 0. The approximation 22 for Win will not work any
longer as ε does not cancel. This problem can be overcome by choosing more

73The first term captures the waiting time to jump out of x = 0 corrected for the fact that the
process visits x = 0 on average 1

1−3λ times before reaching x = 1. The second term corresponds

to the simple waiting time for reaching x = 1 if the process would start at x = 1
N .
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intermediate states for the random walk ξδt to which the process can move after a
downward ε-jump. Simply define:

x∗1 =
1− δ

2

x∗2 =
x∗1 − δ

2
...

x∗b =
x∗b−1 − δ

2

I then postulate that after an ε-event the random walk jumps to x∗1 if ξ
δ
t > 1 − δ

and to x∗i if x
∗
i−2 − δ ≥ ξ

δ
t > x

∗
i−1 − δ for 1 < i ≤ b+ 1 (I set x

∗
0 = 1 and x

∗
b+1 = 0).

The process will therefore reach x = 0 from x∗1 before it reaches x = 1 only with a
probability of order O

(
εb
)
such that my approximation for Win holds again. QED

F Proof of Lemma 1

For the proof I exploit the results from the proof of theorem 2 by taking ε = N−4

again. Through judicious coupling I constructed a random walk ξδt such that
ξδt ≤ X (ηt) with probability 1. Therefore it is sufficient to prove the hypothesis of
the lemma for k independent random walks ξδt and let k →∞.
The expected waiting time W until the random walk ξδt reaches x = 1 starting

from a share of blacks x = 0 can be bounded using the results from the previous
section:

W ≤ Bε−b + AN

The random walk can be subsequently found outside the δ
2
-neighborhood of x = 1

with probability O (N−1) (see appendix E). This implies that after a time 2W
δ
the

process has reached x = 1 once with probability 1− δ
2
and can therefore be found

inside the δ
2
neighborhood with probability 1− δ

2
−O (N−1).74

For large k the normal approximation of the binomial distribution can be used
to show that the share of blacks on the street is at least 1− δ

2
− 2√

k
−O

(
1
N

)
with

probability 0.95 after time 2W
δ
.75 So we simply choose k > 16

δ2
and the share of

blacks has to be at least 1− δ after time 2W
δ
with probability 0.95. Therefore the

expected time to reach the δ neighborhood of x = 1 is at most 1
1−0.95

2W
δ
. QED

74A random variable X with expectation E (X) has to fulfill P
(
X ≤ E(X)

δ

)
≥ 1− δ.

75For a random variable X the following relation holds: P (|X − E (X)| ≤ 2σ) ≥ 0.95, where
σ denotes the standard deviation.
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Figure 17: White “encircled” cluster in an inner-city with radius r = 1: white
resident at upper right-hand corner (shaded) has two white and two black neighbors

G Proof of Lemma 4

Consider an encircled cluster C of white residents such as shown in figure 17 which
forms the initial configuration of the residential neighborhood process, i.e. η0 = χC
where χC (z) = 0 iff z ∈ C. By definition this cluster can be covered by a suitable
rectangle S and η0 = χC ≥ χS.
First, I prove that ηt ≥ χS for all t > 0 such that the white cluster can never

’break out’ of S. This is equivalent to showing that after a sequence of individual
residents switching at random times t0 = 0, t1, t2, .., ti, .. the inequality ηti ≥ χS
holds. This claim is proved by induction. For i = 0 it is true by assumption.
Assume it holds for i − 1. Then the switch from ηti−1 to ηti involves either a
resident z ∈ S or z /∈ S. In the former case we are fine. The latter case is not
possible, as for all z /∈ S and the configuration χS the share of black neighbors
x (χS, z) of z is at least

1
2
+ r
m
. By the inductive hypothesis ηti−1 ≥ χS and hence

x
(
ηti−1 , z

)
≥ x (χS, z). Due to assumption 1 and the absence of tolerant agents no

white house-seekers will ever be interested in moving to z.
Second, I prove that all configurations η ≥ χS except the black ghetto config-

uration ηb are transient states of the Markov process. This establishes the result
because the black ghetto is absorbing. It is sufficient to show that there exists a
positive transition probability from any configuration η ≥ χS to ηb. This will be
guaranteed if for all configurations η ≥ χS of cluster mass m there exists a positive
transition probability to a configuration η′ of cluster mass m−1 (i.e. a single white
resident is replaced by a black resident) - in this case there exists with positive
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probability a sequence of m switches from η to ηb.
Consider a configuration η ≥ χS of cluster mass m > 0. Choose any natural

Cartesian coordinate system on the geometry GrC . Then find the upper right-hand
corner z∗ of the cluster (see figure 17). The share of white neighbors is at most 1

2
.

Therefore, black house seekers will not feel isolated and show interest in the flat
and the ethnicity of the resident at flat z∗ will switch with positive probability of
at least 1− λ. QED

H Proof of Theorem 4

It is sufficient to count the number of ’mutations’ (i.e. completely tolerant house-
seekers) that are necessary to leave the basin of attraction of the black ghetto
configuration ηb. Ellison (1999) defines that number to be the radius R (ηb) and
the result follows directly from his theorem 2 (see appendix A for transforming the
residential neighborhood process into an equivalent discrete time process).
On streets the result is trivial because a cluster of size [2r (1− αw)]

+ is min-

imally stable. In inner-cities it suffices to show that
[ √
n

r+1

]
− 1 mutations do not

allow the process to leave the basin of attraction of the black ghetto. The inner-city

can be divided up into k =
[ √
n

r+1

]
full horizontal stripes Hi (i = 1..k) and equally

many vertical stripes Vj (j = 1..k) of width r+1. Assume that
[ √
n

r+1

]
− 1 tolerant

agents moved into the inner-city up to time t. Then there must be at least one
horizontal stripe Hi∗ where no mutations has occurred. Due to assumption 1 all
residents on that stripe have to be black (no white cluster could have invaded that
stripe from outside). For the same reason there must be at least one vertical stripe
Vj∗ where all residents are still black at time t. But this implies that all existing
white residents at time t can be covered by a rectangle of length and width at most√
n− r − 1. Therefore, the set of whites is “encircled” and the configuration ηt is

in the basin of attraction of the black ghetto by lemma 4. Hence at least
[ √
n

r+1

]
mutations are necessary to jump out of D (ηb). QED

I Proof of Theorem 6

I will analyze the discrete time counterpart of the imitation process with transition
matrix P ε which can be derived as in appendix A. I index all the

(
n
m

)
configurations

η ∈ Z where exactly m agents have opinion 1 by{
ηm,1, ηm,2...ηm,(nm)

}
.
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I also introduce a reduced state space Z ′ =
{
0, 1
n
, 2
n
.., 1
}
representing the possible

shares of agents having opinion 1. The ergodic distribution µIn of the imitation
process on the graph G (n) induces a corresponding distribution µn on the reduced
state space defined by

µn

(m
n

)
=

(nm)∑
i=1

µIn (ηm,i) .

Next, I derive a transition matrix Pn describing a Markov chain on Z
′ which

generates the ergodic distribution µn. For any configuration η ∈ Z I index all v (η)
configurations which generate η when a single agent changes her opinion from 0 to
1 by {

η−,1, η−,2...η−,v(η)
}
.

Similarly, I index all w (η) configurations which generate η when a single agent
changes her opinion from 1 to 0 by{

η+,1, η+,2...η+,v(η)
}
.

For the ergodic distribution µIn the probability ’outflow’ from some configuration
ηm,i ∈ Z has to equal the probability ’inflow’:76

∑
µ6=ηm,i

P ε (ηm,i, µ)µ
I
n (ηm,i) =

w(ηm,i)∑
j=1

P ε
(
η+,jm,i, ηm,i

)
µIn
(
η+,jm,i

)

+

v(ηm,i)∑
j=1

P ε
(
η−,jm,i , ηm,i

)
µIn
(
η−,jm,i

)

After summing over the ηm,i configurations one obtains:(∑
i µ
I
n (ηm,i)

∑
j P
ε
(
ηm,i, η

−,j
m,i

)
µn
(
m
n

) +

∑
i µ
I
n (ηm,i)

∑
j P
ε
(
ηm,i, η

+,j
m,i

)
µn
(
m
n

)
)
µn

(m
n

)

=

∑
i µ
I
n (ηm+1,i)

∑
j P
ε
(
ηm+1,i, η

−,j
m+1,i

)
µn
(
m+1
n

) µn

(
m+ 1

n

)

+

∑
i µ
I
n (ηm−1,i)

∑
j P
ε
(
ηm−1,i, η

+,j
m−1,i

)
µn
(
m−1
n

) µn

(
m− 1

n

)
(24)

76Note, that the imitation process can reach ηm,i only due to a single switch by one agent.

63



1/3

1/3

2/3 2/3

1.0

1.0

Figure 18: Proper graph of order q = 3 and a configuration with exposure e (η) = 2

I denote the probability of jumping from m
n
to m−1

n
with am and the probability of

jumping from m
n
to m+1

n
with bm such that equation 24 becomes:

(am + bm)µn

(m
n

)
= am+1µn

(
m+ 1

n

)
+ bm−1µn

(
m− 1

n

)

The following transition matrix Pn gives rise to a Markov chain with ergodic dis-
tribution µn:

Pn (x, x
′) =



am if x = m

n
and x′ = m−1

n

bm if x = m
n
and x′ = m+1

n

0 otherwise

The Markov chain described by Pn has the same structure as the process dis-
cussed in appendix C. I can therefore use formula 14:

µn

(m
n

)
=
am+1

bm
µn

(
m+ 1

n

)

It is advantageous to transform the parameters in the following way. I define
µ∗n
(
m
n

)
= (am + bm)µn

(
m
n

)
, a∗m =

am
am+bm

and b∗m =
bm

am+bm
. Formula 14 is preserved

by these transformations:

µ∗n

(m
n

)
=
a∗m+1
b∗m
µ∗n

(
m+ 1

n

)
(25)

The ratio
a∗m+1
b∗m
can be bounded by exploiting the linearity of imitation. For any

configuration η I define weights wz for each agent z on the graph such that whenever
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(z, z′) is an edge of the graph and agents z and z′ use different actions then 1
q
is

added to the weights of both agents. These weights are exactly the switching
probabilities of each agent under the undisturbed imitation process. From the
construction and the properness of the graph it is immediately clear that the sum of
weights of agents with opinion 0 equals the sum of weights of agents with opinion 1.
This observation formalizes exactly the intuition that the imitation effect ’cancels
out’. I call the sum of weights the exposure e (η) of the configuration η. Clearly

0 ≤ e(η)
n
≤ min (x, 1− x). Figure 18 demonstrates the algorithm on a small graph

of order 3.
I can now conveniently express the probability that the process jumps from

some given configuration η with m agents having opinion 1 to some configuration
η′ where m+ 1 agents have opinion 1:

(1− ε)
e (η)

n
+ ε (1− x)

Similarly, the probability that the process jumps from η to η′′ where m− 1 agents
have opinion 1 can be calculated as:

(1− ε)
e (η)

n
+ εx

I can then deduce

am = (1− ε) h (x) + εx

bm = (1− ε) h (x) + ε (1− x) , (26)

where h (x) =
∑
i=1 µ

I
n(ηm,i)e(ηm,i)

nµn(m)
. Note, that

0 ≤ h (x) ≤ x.

Hence, for x < 1
2
the following inequalities must hold:

a∗m =
(1− ε)h (x) + εx

2 (1− ε) h (x) + ε
≤
1− ε

2
+ εx

b∗m =
(1− ε)h (x) + ε (1− x)

2 (1− ε) h (x) + ε
≥ 1− x

a∗m+1
b∗m

≤
1−ε
2
+ εx

1− x
+O

(
1

n

)
(27)

For x < 1
2
− δ
2
the following uniform bound holds:

a∗m+1
b∗m
≤
1−ε
2
+ ε1−δ

2
1+δ
2

+O

(
1

n

)
≤ Cε,δ < 1
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Due to the symmetry of the ergodic distribution and repeated use of formula 25

one can conclude that µ∗n (x) ≤ [Cε,δ]
δn
2 µ∗n

(
1
2
− δ
2

)
for
∣∣x− 1

2

∣∣ > δ. Recall, that
am + bm > ε. Therefore the process will be found within the δ-neighborhood of
x∗ = 1

2
with a probability of at least

1−
1− 2δ

ε
n [Cε,δ]

δn
2 ,

which tends to 1 as n→∞. Therefore, the process clusters around x∗.
The second part of the theorem is now easy. The waiting time until the δ-

neighborhood is reached is at most as large as the corresponding waiting time of
a process which satisfies

a∗m+1
b∗m
= Cε,δ

for x < 1
2
− δ
2
and starts from x = 0. Because this random walk has a positive

drift the waiting time is O (n) (see appendix B). Note, that the discrete ’clock’
increases at increments of 1

n
and the result follows immediately. QED
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